AVRO AIRCRAFT LIMITED

INTER - DEPARTMENTAL MEMORANDUM

Ref 4072/20/J

Date November 4, 1957

To Mr. J. D. Hodge, Technical Flight Teet Co-ordinator

From J. Lucas, Chief of Performance Evaluation

Subject PERFORMANCE DATA FROM ARROW 1 FLIGHT TESTS

Attached herewith, please find report 71/PERF/2, Ieeue 2, on Programming for Performance Data from Arrow 1 Flight Tests. This issue supereedee the original issue of report 71/PERF/2 and includes clarification and refinemente to the list of available instrumentation, Sanborn editing records and to the applicable formulae for I.B.M. 704 computations. A note on aircraft weight and C.G. data (Appendix I) ie added.

It is realized that performance testing on Arrow 1 aircraft is of secondary importance but useful results are readily obtainable from the existing program using available instrumentation. Adequacy of thrust measuring instrumentation is discussed under report 70/PERF/ 1 App. II.

J. Lucas

Chief of Performance Evaluation.

16

Oi

c.c.

Meesre J. A. Chamberlin

F. Brame

A. J. Downing

D. N. Scard

D. R. Woolley

G. Esilman

Central Files

PROGRAMMING FOR PERFORMANCE DATA FROM ARROW 1 FLIGHT TESTS INTRODUCTION:-

This report on programming for performance data from Arrow 1 flight tests is divided into three main sections, i.e. 1) Available instrumentation. 2) Sanborn trace recorder for editing and 3) Input output summary and applicable formulae and charts for I.B.M. 704 computations.

Use is made of available instrumentation, which can be used for obtaining preliminary performance data during the course of Arrow 1 flight testing. Imstrumentation accuracy is given the dimensional units with corresponding percent accuracy of full range varying between 0.2% for measured angle of attack to 3.0% for dive brake angle, but generally between 0.5 and 1.0% for all other instrumentation. Standard recording frequency is 20 per second except were noted as continuous. However, overall data processing at 2 per second will suffice with a maximum frequency of 5 per second and a minimum frequency of every 5 seconds when required. Hence before final data processing on the I.B.M. digital computor, the data will need to be transformed to the lower frequencies either on the computor itself or on an intervalometer.

A Sanborn trace recorder will be used to edit the flight test data prior to entering on the I.B.M. 704 computor. This trace recorder will also show traces of all measurements which require no further computations, such as elevator angle, pitch angle, air brake angle etc. This would eliminate the need to enter them on the I.B.M. 704 computor and would simplify programming. It would be desireable to convert ambient (static and dynamic) pressure measurements to indicated Mach number and indicated altitude on the Sanborn recorder to facilitate editing as well as to record accelerations and R.P.M. settings to determine the steadiness of each manoeuvre. A total of 8 traces per record is available, with paper speeds of .25, .5, 1.0, 2.5, 5.0, 10, 25, 50 & 100 mms/sec and a paper length of 200 feet. At the editing stage, time frequencies between 5 seconds intervals and 5 per second will be decided for 704 computations.

Computations will then be made by the 704 computor from which all output will be presented as time plots and tabulated when required, except from steady level speed tests where the stabilized portion will be previously obtained by editing and the computor output tabulated only. Cross plots of computor output data will be made only when specifically requested.

All records should be identified by aircraft number, flight number and run number.

TECHNICAL DEPARTMENT

REPORT NO. 71/PERF/2 Issue 2

2

SHEET NO. PREPARED BY

DATE

16

AIRCRAFT:

ARROW 1

PERFORMANCE FLIGHT TESTS

R. Waechter Nov. 1957 CHECKED BY DATE

SECTION I :- AVAILABLE INSTRUMENTATION

	<u>IT EM</u>		RANGE	A	CCURACY	REMARKS
1) 2) 3)	Time scale Record indentification or coding Ambient static pressure	a) b) c)	0-720 psf.	+	Ol sec. Ol sec. 15 psf. 5 psf. 2 psf.	Pending Require range selector.
4)	Ambient differential pressure	a) b) c)	0-1440 psf.	+ + +	20 psf.) 10 psf.) 5 psf.)	Require range selector.
5)	0. A. T _M		-65 + 350°F	+	2°F	
6)	Longitudinal acceleration		± lg	<u>+</u>	.0lg	Parallel to fuselage datum.
7)	Lateral acceleration		- lg	<u>+</u>	.01g	Continuous recording(and
8)	Normal acceleration		-3 + 8 g	+	.05g	continuous recording (and telemetered).
9)	Angle of attack (d)		-10 + 40°	+	.1°	Continuous
10)	Angle of pitch (0) complete range sensitive range	*	± 60° ± 10°		0.5°	recording.
11)	Rate of change of pitch (θ)		+ 30°/sec.	+	.30°/sec	Continuous recording.
12)	Elevator angle (port and stbd.)		-30 + 20° + 10°	+	.3°	Continuous recording.
13)	Air brake angle(port and stbd.)		5 to 60°	+ + + + + + + + + + + + + + + + + + + +	20	Only port or stbd. required
14)	L.P.Comp.R.P.M.(N1)(port and stbd.)		0 - 110%	+	- 5%	Book. Tequil bu
15)	H.P.Comp.R.P.M.(N2)(port and stbd.)		0- 110%	+	.5%	
16)	Engine fuel flow (port and stbd.)		00-25,000 ¹ b	+ :	125 lb	
17)	A/B fuel flow (port and stbd.)		5700-65000 ¹ 5	+ (650 lb hr.	Maximum range value could be reduced to 40,000 lbs. for better accuracy.
			Tarana Bain			

Ü1

71/PERF/2 Iss 2

AIRCRAFT:

ARROW I

PERFORMANCE FLIGHT TESTS

SHEET NO. PREPARED BY DATE Sept. 1957. R. Waechter DATE CHECKED BY

16

UI

	ITEM	RANGE	ACCURACY	REMARKS
18)	Fuel remaining, per tank (14 off)	0-300 gals each (max.)	+ 6 gals (max.)	
19)	Engine intake P ₂ (port and stbd)	0-30 psia	<u>+</u> .3 psi	Representative probes after rate calibration.
20)	Engine intake p2 (port and stbd)	n	n	calibration.
21)	Engine intake T ₂ (port and stbd) optional	-75+350°F	+ 4°F	May substitute free stream T.
22)	Turbine discharge P7 (port and stbd)	0-45 psia	<u>+</u> .45 psi	Manifolded rake measure-
23)	Turbine discharge T ₇ (port and stbd)	0-1400°F	<u>+</u> 14°F	menos.
24)	By-pass gills shut ind. lights, 2 off(port and stbd) (one on side gills and one on oil cooler gill)		shut -not shut and shut and fully open	
25)	By-pass temp. above and below jet pipe \mathbf{T}_{B} (port)	0-500°F	+ 5°F	r 4
26)	By-pass press. below mid jet pipe \mathbf{P}_{B} (port)	0-35 psia	+ .35 psi	Static pressure measurement here assumed = downstream total press.
27)	Diff. static in lower ejector just upstream of final nozzle, relative to ambient static (port) (p _B - p _i)	-3 to 0 psig	+ .05 psi	
28)	By-pass temp. above and below turbine (port) &	0-500°F	- 5°F	Of incidental use only, in performance measurements.
29)	By-pass static press. above rear comp. (port) #	0-35 psia	+ .35 psi	

NOTE: - Items 25,26 and 27 are available on port side only and will be assumed identical on starboard side.

Item denoted thus x, are not required for the program as detailed herein but should be available if and when needed.

AVRO AIRCRAFT LIMITED

REPORT NO. 71/PERF/2 Iss.2

SHEET NO

PREPARED BY

R. Waechter Sept. 1957 CHECKED BY DATE

TECHNICAL DEPARTMENT

AIRCRAFT

ARROW I

PERFORMANCE FLIGHT TESTS

SECTION II :- SANBORN EDITING RECORDS

Sanborn trace records will consist of a time history of direct measurements for editing purposes and recording data which requires no further computation. These traces should be recorded versus time to within + .01 sec. such that accurate correlation with succeeding I.B.M. 704 records can be made. Overall accuracy to Sanborn trace output, including instrument measuring accuracy, should be within ± 2% of full scale reading. In the case of ambient pressure measurements the most sensitive reading should be selected for recording and if conveniently possible they should be converted to traces of indicated Mach number and indicated altitude using the following formulae.

$$\left(\frac{P_{T}}{p}\right)_{i} = (1 + .2 M_{i}^{2})^{3.5} \text{ for } \left(\frac{P_{T}}{p}\right)_{i} \leq 1.394$$

$$\left(\frac{P_{T}}{p}\right)_{i} = \left(1 + .2 M_{i}^{2}\right)^{3.5} \times \left[\frac{1}{\left(\frac{M_{i}^{2} + 5}{6 M_{i}^{2}}\right)^{1.4} \left(\frac{7 M_{i}^{2} - 1}{6}\right)^{2.5}}\right]^{2.5}$$

for
$$\left(\frac{P_T}{p}\right)_i$$
 > 1.894

$$H_i = 145,447 \left[1 - \left(\frac{p_i}{2116} \right)^{0.1903} \right]$$
 for $p_i \ge 472.7$ psf

$$H_i = 164,221 - 47,907 \log p_i$$
 for $p_i < 472.7 psf$

AVRO AIRCRAFT LIMITED

TECHNICAL DEPARTMENT

ECHNICAL DELA

AIRCRAFT:

ARROW 1 PERFORMANCE FLIGHT TESTS

REPORT NO. 71/PERF/2 ISS,2

SHEET NO. 5

PREPARED BY DATE

R. Waechter Oct. 1957

CHECKED BY DATE

Two Sanborn records, consisting of 8 items each, are required i.e.

- 1. a) Ambient static pressure pi
 - b) Ambient dynamic pressure qci = PTi pi
- convert to Mi and Hi if conveniently possible

- c) H.P.compressor R.P.M., port N2p
- d) H.P.compressor R.P.M., stbd.N28
- e) Afterburner fuel flow rate, port (QA/B)p (for A/B on or off indication only)
- f) Normal acceleration
- g) Longitudinal acceleration
- h) Lateral acceleration

as measured relative A/C datums

- 2. a) Angle of pitch
 - b) Air brake angle
 - c) By-pass gill position (port and stbd) shut-not shut indications
 - d) Oil cooler gill (port and stbd) shut and fully open indications
 - e) Elevator angle (complete range, port)
 - f) Elevator angle (sensitive range, port)
 - g) Elevator angle (complete tange, stbd.)
 - h) Elevator angle (sensitive range, stbd.)

The first record will be used for editing and thereafter for reference only, while the second record will be used in conjunction with I.B.M. 704 computer output data.

Some identification signal should be available on the Sanborn records where the pilot has noted the start and/or finish of a test. This signal may be obtained from the pilot's voice recording or from a pilot's coding button. When this identification signal is made available it may replace item 2 h.) on the Sanborn records.

71/PERF/2 Iss.2 REPORT No.

SHEET NO

AIRCRAFT:

ARROW 1

PERFORMANCE FLIGHT TESTS

PREPARED BY DATE R. Wechter Nov. 1957 CHECKED BY DATE

INPUT - OUTPUT SUMMARY AND APPLICABLE FORMULAE OR SECTION III:-CHARTS FOR I.B.M. 704 COMPUTOR

In general, I.B.M. 704 computor output will be presented graphically versus time except when specifically requested to be tabulated or be cross plotted. Graphical presentation will be made with 4 outputs versus time on one graph and therefore the following input - output summary is grouped such that each successive 4 outputs are related and will appear on one graph.

Reading accuracy of time scale should be $\frac{+}{2}$.01 seconds Symbols used are such that capital $\frac{+}{2}$ P = total pressure Engine

small p = static pressure capital T = Total Temperature

subscript P = port

S = stbd.

N = net thrust G =

gross thrust

installed engine thrust X

basic or primary engine thrust

subscript 0 = free stream static

(or initial conditions) 1 = station 1, free stream

total

2 = station 2, engine face

station 7, turbine outlet

10 station 10, final nozzle (primary)

station 10, in by-pass B

no subscript free stream conditions

All instrument calibrations, which are in the form of "Y = a x + b" conversions from electrical signal to the required units, are taken for granted in the overall data processing, either prior to entering on the 704 computor or on the computor itself.

It is assumed that a) acceleration measurements are converted to gr units

b) ambient pressure measurements are converted to

c) engine inlet, turbine outlet and bypass pressure measurements are converted to psi

d) all temperature measurements (ambient and in and around engine) are converted to K.

Hence ensuring formulae are derived using the above units. Where outputs such as L/p , $F_{N/p}$, D/p etc are required in units of square

inches, conversions are made by appropriate constants in the applicable formulae.

ARROW I - PERFORMANCE FLIGHT TESTS

INPUT - OUTPUT SUMMARY AND APPLICABLE FORBULAE OR CHARTS FOR I.B.M. 704

	INPUT	MARY AND APPL	OUTPUT	
0)			OSTFOI	APPLICA
0.)	Time (T) Differential Pressure (P _{Ti} - p _i)			a) Select
	0-2380, 1440 and 720 psf			b) Determ
2)	Ambient Static Pressure pi			
	0-2160, 720 and 288 psf			c) Determ
		la)	M	d) Determ
	•		v.	The state of the s
-				or P _T
				р
				-) D.+
				e) Determi
				Δ p
				p i
		1(b)	H _p (ft)	p = p f) determi
			Į, , ,	Hp = 14
				11p = 14
-				$H_{p} = 16$
		1(c)	$R_{O_{1}}$	Rp1 = (
	C	1-3 4		
	and, the second			
	(mail) (mail) (mail)			

FLIGHT TESTS

AE OR CHARTS FOR I.B.M. 704 COMPUTOR

AE ON CHARES FOR .	1. B. H. YO4 COMPUTOR	
	APPLICABLE FORMULAE, OPERATION OR CHART	REWARKS
	a) Select reading of greatest sensitivity b) Determine Pri/pi	
	c) Determine $P_{T/p}$ Chart I $\triangle \left(P_{T_{i/p_{i}}}\right)$ vs $P_{T_{i/p_{i}}}$	Pitot correction (unique curve)
	Chart II $\triangle \left(P_{T/p_{i}} \right)$ vs $\mathbf{E}_{T/p_{i}}$	Static correction (unique curve)
-	d) Determine M from $P_{T/p} = (1 + 2M^2)^{3.5}$	P _{T/p} ≤ 1.394
	or $\frac{P_{T}}{p} = (1+.2M^{2})^{3.5} \left[\frac{\frac{1}{M^{2}+5}}{\frac{M^{2}+5}{6M^{2}}} \right]^{1.4} \left(\frac{7M^{2}-1}{6} \right)^{2.5}$	P _T /p > 1.894
	e) Determine p using chart II $ \frac{\Delta p}{p_{i}} = \frac{-\Delta \left(P_{T/p_{i}}\right)}{P_{T/p}} $ $ p_{i} = p_{i} + \left(\Delta p/p_{i}\right) p_{i} $	
t)	f) determine Hp	
	$H_{p} = 145,447 \left[1 - \left(\frac{p}{2116} \right)^{0.1903} \right]$ $H_{p} = 164,221 - 47,907 \log p$ $Rp_{1} = \left(1 + .2M^{2} \right)^{-3.5}$	p ≥ 472.7 psf. } I.G.A.O. p ∠ 472.7 psf. }
		Ref: NACA TR 1235

ARROW I - PERFORMANCE FLIGHT TESTS

INPUT - OUTPUT SUMMARY AND APPLICABLE FORMULAE OR CHARTS FOR I.B.M. 704

			Total and Foreign City Office and Table 36, 100			
	INPUT		OUTPUT	APPLI		
3.	Amb. air temp T _M °K	1 (d	To °K	$T_0 = T_N$		
		2 (a	$P_1\sqrt{T_1}$	$P_1\sqrt{T_1}$		
		2(ե)	(R/C) _l (fpm)	(R/C) ₁		
		2(c)	(√C) ₂ (îpm)	(3/c) ₂		
	1 0 - 1					
	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2(a)	√ C √ C	<u>R√C</u> =		
4.	Angle of pitch 0 deg.	-				
5.	Rate of pitch q = 0 deg/sec					
6.	Angle of attack di	3(a)	Angle of attack &	d = di		
7•	Normal accel. a _{Ni} (g units)	3(b)	Normal accel a _N	a _N * [a		
70•	Long. accel al _i (g units)	3(c)	Long accel al	a _{1.} = [
9.	Fuel remain. (14 tanks)			\mathbb{F}_1 and		
10(a)	Operational weight empty = Wo			F ₃ , F ₄		
	C.G. position (C.G.) % M.A.C.	3(d)	C.G. % M.A.C. (u/c up)			
	at Wo, Wo up, water methonal and			0.G. =		
	alcohol tanks full					
	The state of the s					

LICHT TESTS

E OR CHARTS FOR	I.B.W. 704 COMPUTOR	
	APPLICABLE FORMULAE, OPERATION OR CHART	REWARKS
	$T_0 = T_M \left(1 + .2 K M^2 \right)$	K = constant, initially = 1
	$P_1 \sqrt{T_1} = R_{01} p \sqrt{T_0 (1 + .2 N^2)}$	
	$(R/C)_1 \text{ fpm} = \frac{\Delta \text{ Hp (ft)}}{\Delta \text{ T (secs)}} \times 60$	
		Non steady level flight only
	$(\mathbb{R}/\mathbb{C})_2 \text{ fpm} = 4030 \underline{\Delta} (\mathbb{N}^2 \text{ To})$ $\underline{\Delta} T (\text{secs})$	Note:- (R/C) ₂ = 3945 × a ₁ for a ₁ in 'g' units
	$\frac{\mathbb{R}/\mathbb{C}}{\sqrt{9}} = \frac{(\mathbb{R}/\mathbb{C})_1 + (\mathbb{R}/\mathbb{C})_2}{\sqrt{\mathbb{R}_0/288}}$	
		9 E fus. datum mel. horizontal
ack L	$d = di + \Delta d - \frac{q (x - x c.c.)}{3765 \text{ M } \sqrt{E_0}}$	△ = corr ⁿ for bending dupwash (X-X C.G.) = vane distance from C.G. = 45.8 feet
a n	$a_{N} = \begin{bmatrix} a_{Ni} - \cos \theta \end{bmatrix} \times \cot \theta$ + $\begin{bmatrix} a_{L_{1}} - \sin \theta \end{bmatrix} \times \sin \theta$	Inputs relative to APC datum Outputs relative to flight path. See P/AERO DATA/92 Iss. 2 for)
L.	$a_{L} = \begin{bmatrix} a_{L_{i}} - \sin \theta \end{bmatrix} \cdot \cos \zeta$ $- \begin{bmatrix} a_{R_{i}} - \cos \theta \end{bmatrix} \cdot \sin \zeta$	instrumentation not at C.G.
	F_1 and F_2 = fuselage tanks fuel remain, (Lin.) F_3 , F_4 , F_5 , F_6 , F_7 , and F_8 = wing tanks (pprt -	useable fuel only
(1) ()	13, 14, 15, 16, 17, and 18 = wing banks (pit	The state of the s
(u/c up)	0.G. = $W_{0x}(C.G)_{0}$ -22.5 F_{1} -0.5 F_{2} + 2.8 F_{3} +184 F_{4}	I I
	No 4≤F	
		See Appendix I

ARROW I - PERFORMANCE FLIGHT TESTS

INPUT - OUTPUT SUMMARY AND APPLICABLE FORMULAE OR CHARTS FOR I.B.M. 704

	INPUT - OUTPUT SUM	ARY AND A	PPLICABLE FORMULAE OR CHARTS F	OR I.B.M. 704
	INPUT		OUTPUT	APPLI
		4(a)	<u>n</u> w	
		4(b) 4(c)	cr ^M	c _L w
		4(d)	N2/Ve	
				N ₂ /
11.	L.P. rpm port Nipi %	5(a)	$\overline{N_1}_{p}/\sqrt{T_1}$	N _{1P}
12	L.P. rpm stbd. Nlsi %	5(b)	$^{\rm N}$ ls $/\sqrt{{ m T}}$ 1	- N _{ls/}
13.	H.P. rpm port N _{2Pi} %	5(c)	$^{\mathrm{N}}$ 1 _S $/\sqrt{\mathrm{T}}$ 1 $^{\mathrm{N}}$ 2 _P $/\sqrt{\mathrm{T}}$ 1	-
14.	H.P. rpm stbd. N231	5(d)	$^{N_{2_{8}}}/\sqrt{^{T}_{1}}$	N2P/
				N ₂ s/
300	Port eng. intake p2p (psi)			
and a second sec	Stbd. eng. intake p _{2S} (psi)			
4				

IGHT TESTS

OR CHARTS FOR I.B.M. 704 COMPUTOR

Nov. 1957 Pres by R. Weechter

APPLICABLE FORMULAE, OPERATION OR CHART	REMARKS
$\frac{\mathbf{h}\mathbf{w}}{\mathbf{p}} = \frac{\mathbf{a}_{N}(\mathbf{w}_{0} + \mathbf{\mathcal{L}}\mathbf{F})}{\mathbf{p}/144}$	
$C_{L_W} = \frac{a_N (W_0 + \angle F)}{.7 \text{ p } \text{m}^2 \text{ s}}$	S = 1225 sq.ft. wing area = 176,300 sq. inches See output 13(a) and (b) fo. thrust corrected values
$\frac{N_2/\sqrt{\theta}}{\sqrt{1}} = \frac{N_{2P_1} + N_{2S_1}}{2\sqrt{T_0/238}} \times 8732$ $= \frac{N_{1P_1}/\sqrt{T_1}}{\sqrt{T_0(1 + .2M^2)}}$	
$= \frac{N_{1p} / \sqrt{T_1}}{\sqrt{T_0 (1 + .2M^2)}}$	100% N ₁ = 6774
$N_{1s}/\overline{T}_{1} = \frac{N_{1s_{i} \times 6774}}{\sqrt{T_{0}(1 + .2M^{2})}}$	
$N_{2p}/\sqrt{T_1} = N_{2p_i} \times 8732$ $\sqrt{T_0 (1 + .2M^2)}$	199% N ₂ = 8732
$N_{2s} \sqrt{r_1} = N_{2s_{i-x}} \times 3732$ $\sqrt{r_{o} (1 + .2M^2)}$	
V T₀ (1 + .2M²)	

ARROW I - PERFORMANCE FLIGHT TESTS

IMPUT - OUTPUT SUMMARY AND APPLICABLE FORMULAE OR CHARTS FOR I.B.M. 704

		TON	1.0.4
	INPUT	OUTPUT	APPLIC
17.	Port eng. intake P _{2p} (psi) Stbi. eng. intake P _{2s} (psi)	6(a) P _{2P/P1} 6(b) P _{2S/P1}	P ₁ = R
19.	Port eng. intake T _{2p} (°K)		
20.	Stbd. eng. intake T _{2S} (°K)	$\left\{\begin{array}{c} 6(c) \left(\frac{w_{E}\sqrt{T_{1}}}{P_{1}} \right)_{P} \\ 6(d) \left(\frac{w_{E}\sqrt{T_{1}}}{P_{1}} \right)_{S} \end{array}\right\}$	To a Time
21.	Turbine Disch. (port) Pyp (psi)	7(a) (P ₇ /P ₂) _P	T ₁ = T ₁ P ₁ = R ₁
22,	Turbine Disch, (stbd) P _{7s} (psi)	$7(b) \begin{pmatrix} \frac{\chi_{G}}{CgA_{10}p} + 1 \\ R_{o_{1}} \end{pmatrix} P$ $7(c) \begin{pmatrix} P_{7}/P_{2} \end{pmatrix}_{S}$ $7(d) \begin{pmatrix} \frac{\chi_{G}}{CgA_{10}p} + 1 \\ R_{o_{1}} \end{pmatrix} S$	(x _G CgA ₁₀ P
		$ \frac{\left(\frac{X_{\mathbf{G}}}{C_{\mathcal{C}}A_{10}} + 1}{R_{\mathbf{o}_{\mathbf{I}}}}\right) \mathbf{s} $	CgA ₁₀ p

SHEET NO 10 REPORT NO. 14 PERSIZ ISS PRAP BY R. WAECHTER Sept. 1957 APPLICABLE FORMULAE, OPERATION OR CHART REMARKS Availability pending can use ambient T1 for computations Y = 1.4 A2 = effective engine face area initially .97xgeom.area sq.ins R = 96.02 for T °K Increase measured pg by 1% to allow for station WE UNITS IN LBS/SEC of measurement $\left(\frac{x_{G}}{CgA_{10}p} + 1\right)_{P} = 8.06 \left(\frac{P_{7p}}{p}\right)^{.248} - 7.06 \text{ for } \frac{P_{7p}}{p}$ 1.852 $= 1.255 P_{7p} \qquad \text{for } P_{7p} \qquad 1.352$ $\left(\frac{\chi_{G}}{Cgh_{10}p} + 1\right)_{S} = 3.06 \left(\frac{P_{7s}}{p}\right)^{.243} - 7.06 \text{ for } \frac{P_{7s}}{p} \qquad 1.852$ derived from consistent units 1.255 P₇ for P_{7s} 1.852

E FLIGHT TESTS

JLAE OR CHARTS FOR I.B.M. 704 COMPUTOR

 $T_1 = T_{\tilde{b}} (1 + .2m^2)$ $P_1 = R_{o_1} p$

ARROW I - PERFORMANCE FLIGHT TESTS

IMPUT - OUTPUT SUMMARY AND APPLICABLE FORMULAE OR CHARTS FOR I.B.M. 70.

	INPUT		OUTPUT	APPI
	51L =	3(a)	X _{NP}	
				X _G
				P
		3(b)	y _{NS}	Simi
				A _{lo} :
Service Co.				C _g =
				(m _E
23)	Turb. Disch. port T7p OK	3(c)	T7P/T1	$-\frac{\mathrm{T}_{7\mathrm{P}}}{\mathrm{T}_{1}}$
24)	Turb. Disch.stbd. T75 OK	8(d)	T7s/T1	$\begin{bmatrix} T_1 \\ T_{7_s} \\ T_1 \end{bmatrix}$
				T ₁
25)	Port eng. fuel flow QP.E.	9(a)	$\mathbf{q}_{P.E/P_1\sqrt{T_1}}$	Input
				P ₁

11 71/PERF/2 BS.2
Nov. 1957 R. Waechter

APPLICABLE FORMULAE, OPERATION OR CHART	HEMARES
$\frac{X_{\text{Np}}}{p} = \frac{X_{\text{Gp}}}{p} - \frac{(m_{\text{E}} V)}{p}$ $\frac{X_{\text{G}}}{p} = \begin{bmatrix} 1.255 & P_7 & -1 \\ p & \end{bmatrix} \xrightarrow{C_{\text{g}}} A_{10} \text{ for } \frac{P_7}{p} > 1.352$ Similar to 8 (a) output	$\frac{X_G}{p} = 3.06 \left[\left(\frac{P_T}{p} \right)^{.243} - 1 \right] C_g A_{10}$ $\frac{\text{for } P_T}{p} < 1.352$ $\frac{P_T}{p} \text{ must be derived from consistent units}$
A_{10} = constant for each engine initially 508 Um A/B off = 924 Um A/B on C_g = constant for all J75 engines Chart III C_g vs $\frac{P_T}{p}$ and H_p , A/B off Chart IV C_g vs $\frac{P_T}{p}$, A/B on	Require A/B on or off signal (or Q _A /B signal) to differentiate A ₁₀ and C _g for A/B on and off
$ (m_{E} V) = \frac{M_{E} M \cdot 65.3 \sqrt{T_{o}}}{32.2 \times p/144} $ $ \frac{T_{7P}}{T_{1}} = \frac{T_{7P}}{T_{o} (1+.2M^{2})} $ $ \frac{T_{7s}}{T_{1}} = \frac{T_{7s}}{T_{o} (1+.2M^{2})} $	$W_{ m E}$ in lbs/sec. (see output 6c and c)
Input Q = out.Q $P_{1} = R_{O_{1} \times p} \xrightarrow{\bullet} 144$ $T_{1} = T_{O} (1 + .2m^{2})$	

ARROW I - PERFORMANCE PLICHT TESTS

INTE - CHIPPE STREAM AND APPLICABLE PORMULAE OR CHARTS FOR I.B.M. 704

25. N MAN M. M.			TO PELLO DE PERSONAL OR CHARTS FOR 1.B.M. 702			
	JIE W		CONTENT	APPLICA		
26)	Stbd. eng. fuel flow QS.E.	9(b)	Qs.E. $/P_1\sqrt{T_1}$			
27)	Port A/B fuel flow Qp.A.	9(c)		Input G		
28)	Stbd.A/B fuel flow Qs.A.	9(d)	Qs.A./ _{P1} V _{T1}	r ₁ =		
29)	By-pass air T _B (port) above and below mid jet pipe No. 45 and 46 FAR/105/1 Part 3, Iss. 9.		7111	Average convert		
30)	By-pass air pB (port) below mid jet pipe No.61 of FAR/105/1 Part 3, Iss. 9.			Take mi		
31)	By-pass air p _B - p; (port) where p _B is near final nozzle No. 63 FAR/105/1 Part 3, Iss. 9.			(p _B -		
		10(a)	₩ _B (port)	$W_B = p$ $\frac{1}{\sqrt{a}}$		
		1	F _N /p (port)	$F_{p} = \frac{1}{1}$		
		10(e	F _{N/p} (stbd)	<u>mV</u> =		
				F _G =		
				=		

REMARKS
Assume identical on stbd side
Assume identical on stbd side
p _i = indicated ambient static Assume p _B identical on stbd. side X = 1.4 Assume identical on stbd side A _B = effective by-pass area near final nozzle, sq. inches for p _B in psi. (initially A _B = .93x grav. area
R = 96.02 for T°K WB units in lbs/sec. Use port engine data for calculating F _N /p port and stbd engine data for calculating F _N /s bd :
except W _B (port) can be used to determine (F _M /p) port and stbd.
Require A/B on or off (Q) signal

ARROW I - PERFORMANCE PLICHT TESTS

IMPUT - COTPUT SUCHARY AND APPLICABLE FORMULAE OR CHARTS FOR I.B.M.

	77.77.01.01.01.01.01.01.01.01.01.01.01.01.01.	
<u>Dece</u>	CUTPUT	A
		X
		<u> </u>
		-
		_X p
		Xi
		q.
		F
		_ <u>P</u>
	10(d)	μ
h	11(s) µ (stbd)	
	(stod)	۴
		W
		√T _J
		A./
		D _s
		р

13 71/PERF/2 Iss. 2

APPLICABLE FORMULAE, OPERATION OR CHART	REMARKS
$ \frac{\text{XiG}}{\text{p}} = \frac{\text{XiG}}{\text{XG}} \times \frac{\text{XG}}{\text{p}} $ $ \frac{\text{XiG}}{\text{XC}} \text{ from chart } \overline{\text{V}} $ $ \frac{\text{XiG}}{\text{XC}} \text{ using } P_{\text{T}7/p} $	
XG from 8a) output calcs.	
FG (A/B off) from chart VI knowing \mu and PlO p	
FG (A/B on) from chart VII knowing \mu and \frac{P10}{p} Plo = 99% \frac{P_7}{p} (A/B off)	Assumed
$= \frac{Cg}{.965} \left(\frac{P_{\gamma}}{p}\right) - \left(\frac{Cg}{1.206}\right) + 0.8 \text{ (A/B on)}$	P7 must be derived from consistant units
$\mu = \frac{WB}{WE} \times \sqrt{\frac{T_B}{T_7}}$ (A/B off)	Ws assumed = W ₁₀ (A/B off) i.e. eng. fuel offsets airbleed
$\mu = \frac{WB}{W10} \times \sqrt{\frac{TB}{T10}} (A/B \text{ on})$	and leakage
$ \begin{array}{c} W_{10} \approx W_{E} + \frac{Q_{A/B}}{3600} & (A/B \delta n) \\ \sqrt{T_{10}} \left[XG_{X} \cdot 745 \right] \left[Q_{000} XG \right] \cdot 0.8 \\ \end{array} $	
$ \frac{T_{10}}{A/B} = \frac{XG \times 745}{WE + \frac{QA/B}{3600}} \times \frac{XG}{p} + 0.8 $ on $ \frac{XG \times 745}{WE + \frac{QA/B}{3600}} \times \frac{XG}{p}02 $	p (sq. inches) from 3(a) output calcs.
$\frac{D_{s}}{p} = 4130 C_{D_{S}} M^{2}$	S = 40.98 sq. ft. = 5,900 sc.inches

ARROW I - PERFORMANCE FLIGHT TESTS

IMPUT - OUTPUT SUMMARY AND APPLICABLE FORBULAE OR CHARTS FOR I.E.M. 704 COM

1.13 01 - OUTFOI SOME	TI	FOR 1.E.2. 704 CO
INPUT	OUTPUT	APPLICABL
		o _{DS} = 9c
		$\frac{\int \left(\frac{\mathbf{w}^2}{\mathbf{w}^2}\right)}{\int \mathbf{c} \mathbf{b}^3} \mathbf{t}$
		$\frac{P_{t_1}}{P_{t_2}}$ fr
	11(b) 3945 az M $\sqrt{T_0}$	a _I in 'g'
	ll(c) D/p (at mean interval)	$D/P = \left(\frac{1}{1}\right)$
	ll(d) CD (at mean interval)	C * D/1
	12(a) <u>v</u> 8	V = 38.9
	12(a) <u>v</u> 8 12(b) <u>q</u> F _{NT} Ve	$\begin{array}{cccc} \mathbb{Q} & \mathbb{Z} & \mathbb{Q} \mathbb{P}_{0} \mathbb{E}_{0} \\ & & & & \\ \mathbb{F}_{M_{T}} & \mathbb{E} & \mathbb{F}_{N} \\ & & & & \\ \mathbb{G} & * & & \\ & & & & \\ \end{array}$
	12(c) $\frac{Q_P}{X_{N_P}}$ $\frac{Q_S}{\lambda_{N_S}\sqrt{\theta}}$	ર∓ ≒ રાષ્ટ્ર
	12(d) QS XNSV9	વેલ ≅ વેલ

71/PERF/2 R. Waechter

Iss. 2

APPLICABLE FORMULAE, OPERATION OR CHART REMARKS $c_{D_{S}} = \frac{\delta c_{D_{S}}}{\delta \left(\frac{m_{1}}{m_{0}}\right)} \left[\frac{w_{E} + w_{B} + 5}{6.97 \frac{pM}{\sqrt{T_{0}}}} - \frac{.308(1 + .2M^{2})}{M} \right] \left(\frac{P_{t_{h}}}{P_{L}}\right)^{2}$ Spillage drag coefficient See Report 70/PERF/1 App.II for derivation from Chart VIII from Chart IX an in 'g' units For comparison with $(R/C)_2$ $D/P = \left(\frac{F_{N_P}}{P} + \frac{F_{N_S}}{P}\right) \cos (\angle -2.58^{\circ})$ et mean intervel In steady level flight $D/p = \left(\frac{F_{N_F}}{p} + \frac{F_{N_S}}{p}\right) \cos((2.58))$ not at mean interval. $\frac{(R/C)_1}{3945 \text{ MyT}_0} \times \frac{W}{7}$ May substitute $\left(\frac{a_1}{p}\right)$ by $\left(\frac{(R/C)_2}{3945} \times \frac{W}{p}\right)$ (aL x y) at well interval if (R/C)2 has less scatter than (3945 aL M VTo) . $0 + D/p = \frac{1}{123,600 \text{ k}^2}$ In steady level flight CD does not occur at mean interval V = 38.9 M \To (knots) & = P/2216 Steady level flight only Q = QP.E. + QS.H. + QP.A. + Cast. Fur = FNp + FNS 0 * To/288 QP = QP.E. + QP.A. 95 = QS.E. + QS.A.

1)

ARROW I - PERFORMA OF FLIGHT FESTS

IMPUT - OUTPUT SUMMARY AND APPLICABLE FORGULAS OR CHARTS FOR I.E.S. YOU

INPUT	OUTPUT	APFLI
	13(a) <u>L</u> p	<u>L</u> =
	13(b) C _L	CL a
	13(c) C _L ²	· control de control d
	13(d) M _B (port only)	М3 =
	14(a) M ₂ (port)	M _{2p} =
	14(b) M ₂ (stbd) 14(c) R (N.A.M)	Similar

E PLICHT PESTS ULAS OR CHARTS FOR I	E.M. yO4 CULPUTOR	15	71/PERF/2 ISS;2
	APPLICABLE FORMULAN, OPERATION	ON OR CHART	REWARKS
	$\frac{L}{p} = \frac{a_N (w_0 + \angle F)}{p/144} - \left(\frac{F_N}{p}\right)$ $\frac{C_L}{\frac{\chi}{2}} = \frac{L_{p}}{\frac{\chi}{2}} \text{where } S = \frac{\chi}{2}$		where 2.58° = angle of thrust axis relative to fuselage datum
y)	$M_3 = \sqrt{5 \left[\left(\frac{P_B}{p_B} \right)^{.286} \right]}$	- 1	Note:- P _B (near exit.)≈ measured mid jet pipe pB x 1.07
	$M_{2p} = \sqrt{5 \left[\left(\frac{P_2}{p_2} \right)^{\circ 286} \right]}$	- 1	Increase measured p2 by 1% to allow for station of measurement
	Similar to 14a) $R = 5 (38.95 \text{ M} \sqrt{T_0} \text{ x} \triangle T_{HRS})$)	

SHEET NO

AIRCRAFT:

ARROW 1

PERFORMANCE FLIGHT TESTS

511221 140.	
PREPARED BY	DATE
R. Waechter	Nov. 1957
CHECKED BY	DATE

Chart I (nose probe pitot correction) of

$$\Delta \left(\frac{P_{T_{\underline{i}}}}{P_{\underline{i}}} \right) \text{ versus } \frac{P_{T_{\underline{i}}}}{P_{\underline{i}}} \text{ where } \frac{P_{T_{\underline{i}}}}{P_{\underline{i}}} + \Delta \left(\frac{P_{T_{\underline{i}}}}{P_{\underline{i}}} \right) = \frac{P_{\underline{T}}}{P_{\underline{i}}}$$

will be inserted when flight results become available.

Initially
$$\Delta\left(\frac{P_{T_{\underline{i}}}}{p_{\underline{i}}}\right)$$
 is assumed zero, until flight results prove otherwise.

AURO AIRCRAET LIMITED
MALTON - ONTARIO
TECHNICAL DEPARTMENT

REPORT NO 71/PERF/2 APP. I

SHEET NO 1

PREPARED BY DATE

R. Waechter Nov. 1957

CHECKED BY DATE

0

AIRCRAFT

ARROW I

PERFORMANCE FLIGHT TESTS

AIRCRAFT WEIGHT AND C.G.DATA (For r

(For reference only, see also report No.7-0400-44-10)

First aircraft, operational weight empty 0.W.E., no ballast = 47,759 lb.

with C.G. at sta. 554.51" = 32.7% M.A.C.

Standard MK I, 0.W.E. with 959 lb. ballast at sta. 86.60" = 48,718 lb.

with C.G. at sta. 545.30" = 30.2% M.A.C.

MK I first flight, 0.W.E. with 1432 lb. at sta. 39.16" and 165 lb. in Nav.

seat = 49,356 lb. with C.G. at sta. 541.8" = 29.2% M.A.C.

The above C.G. positions and A/C weights are given for the normal "in flight" condition with "/c up and water methonal and alcohol tanks full, and with cylindrical ejector. On later flights a divergent ejector will be fitted, increasing the A/C weight by 204 lbs. including 79 lbs.ballast to maintain C.G. at the same position. All C.G. and A/C weight values, should be checked by actual weighings before flight and after any A/C modifications

Correction for "/c down and water methonal and alcohol tanks empty = + 0.8%. Using fuel system proportioners, aft C.G. limits therefore are 31% M.A.C. for Standard MK I 30% M.A.C. for MK I first flight.

Effect of $^{\rm u}/{\rm c}$ position is such that the C.G. is shifted aft by .55% M.A.C. at 43,500 lb. A.U.W. and .39% M.A.C. at 68,561 lb. when the $^{\rm u}/{\rm c}$ is selected down.

Draining of the water methonal and alcohol tanks causes a mean aft C.G. shift of approx. 0.22% M.A.C. These tanks should always be full or ballasted unless specifically mentioned in the flight report after each flight.

For the standard MK I airplane, with "/c up and water methonal and alcohol tanks full, and using fuel system proportioners the mircraft C.G. position varies linearly from 29.68% M.A.C. at 68,561 lb. A.U.W. (full fuel) to 30.20% M.A.C. at 48,718 lb. A.U.W. (no useable fuel). This total variation is only 0.52% M.A.C. with a rate of change of + .026% per 1000 lb. decreased A.U.W. Hence C.G. position could readily be estimated "by hand" at any stage of flight knowing:-

- 1) Initial C.G. position, (C.G.)
- 2) Total fuel used in a given flight, F (lbs)
- 3) Flight time to point under consideration AT and
- 4) Total flight time, T

i.e. C.G. position = (C.G.) $_{0}$ + $_{\Delta T}$ x $_{T}$ x $_{1000}$ x .026

AIRCRAFT:

ARROW I

PERFORMANCE FLIGHT TESTS

This value can be used to check an "IBM 704 computed" value based on fuel remaining measurements from 14 fuel tanks. This latter method is more univerisal in determining C.G. position for any possible variations in fuel sequencing but depends on the reliability of 14 fuel tank measurements. The following table gives the useable fuel capacities and horizontal C.G. positions of the 14 fuel tanks.

Tank	Tank Useable Fuel Capacity at 7.8 lbs. per gallon					
1. (fuse)age) 2. (fuselage) 3. (port + stbd. 4. # # 5. # # 6. # # 7. # # 8. # #	wing) R R R R	2161 lbs. 2192 # 2355 # 1404 # 2278 # (collector) 2402 # 4352 # 2699 # 19,843 lbs.Total	Station 354.35** 433.99** 446.14** 502.47** 548.87** 589.11** 627.57** 675.52**	-22.5 - 0.5 2.8 18.4 31.2 42.3 52.8 66.0		

TECHNICAL DEPARTMENT

FT:

ARROW I

PERFORMANCE FLIGHT
TESTS

REPORT NO. 71 Perf/2 App. 1

SHEET NO. 3

PREPARED BY
DATE

R. Waechter
Nov. 1957
CHECKED BY
DATE

Note % M.A.C. = $\frac{\text{C.G. sta''.} -435.82''}{362.61''}$ x 100

AIRCRAFT:

Hence for I.B.M. 704 computations, the aircraft C.G. position is determined as follows:-

- a) Denote fuel remaining in fueelage tanks as $F_1 \& F_2$
- Add port & etbd wing fuel from corresponding tanks and denote
 F3, F4, F5, F6, F7 & F8.
- c) Denote 0.W.E. = Wo and initial C.G. & Wo = (C.G.) for U/C up and water methonal and alcohol tanks full. Then at any time during flight with U/C up:- C.G. % M.A.C. = Wo x (C.G.) -22.5F1 -0.5F2 +2.8F3 +18.4F4 +31.2F5 +42.3F6 +52.8F7 +66.0F8

Wo + EF

If the aircraft is weighed prior to flight with full fuel, and C.G. determined by relative weights on main & nose wheele, then (C.G.)₀ for U/C up = $(C.G. \text{ as meas. U/C down}) \times (W \text{ as meae.}) -28.4 \times 19.843 -.55 \times 48,500$

(W as meas.) -19,843

Where 28.4 = fuel C.G. position (% M.A.C.) tanks full or porportionately full 19,843 = useable fuel tank fuel when full (lbe)
.55 = A/C C.G. ehift, % M.A.C., when the U/C is selected up @ W = 48,500 #

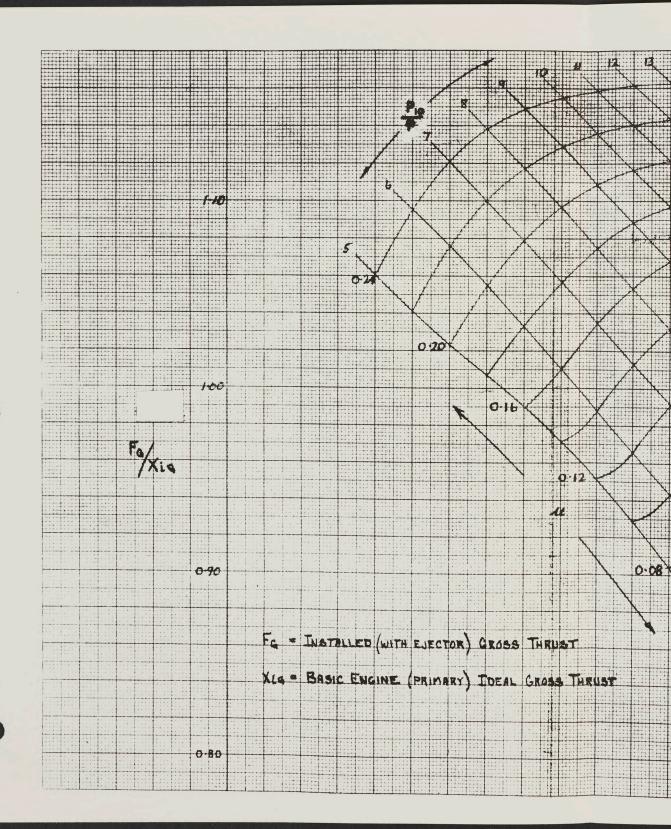
AVRO AIRCRAFT LIMITED

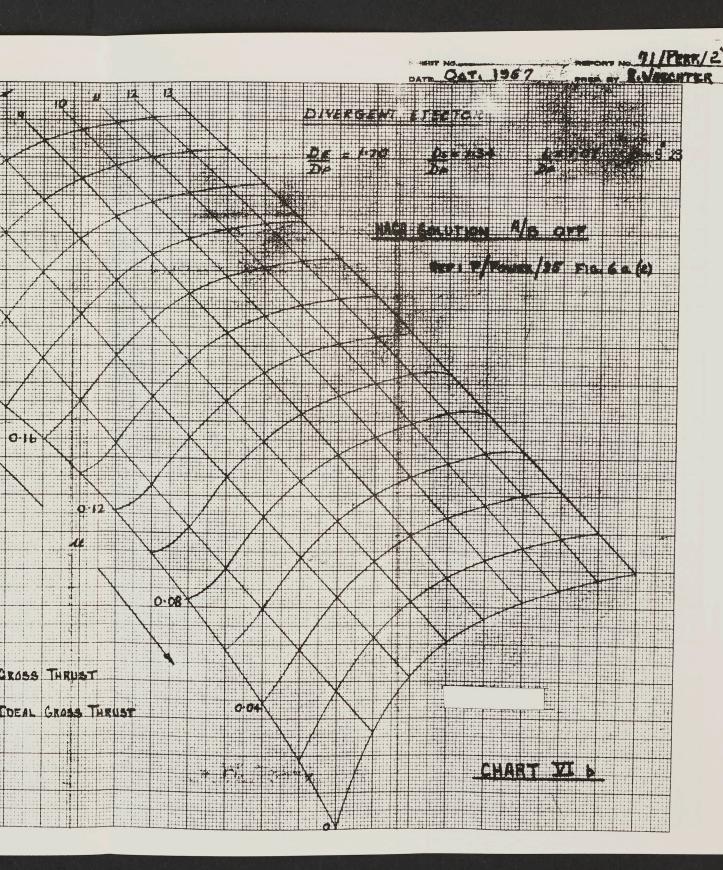
TECHNICAL DEPARTMENT

AIRCRAFT:

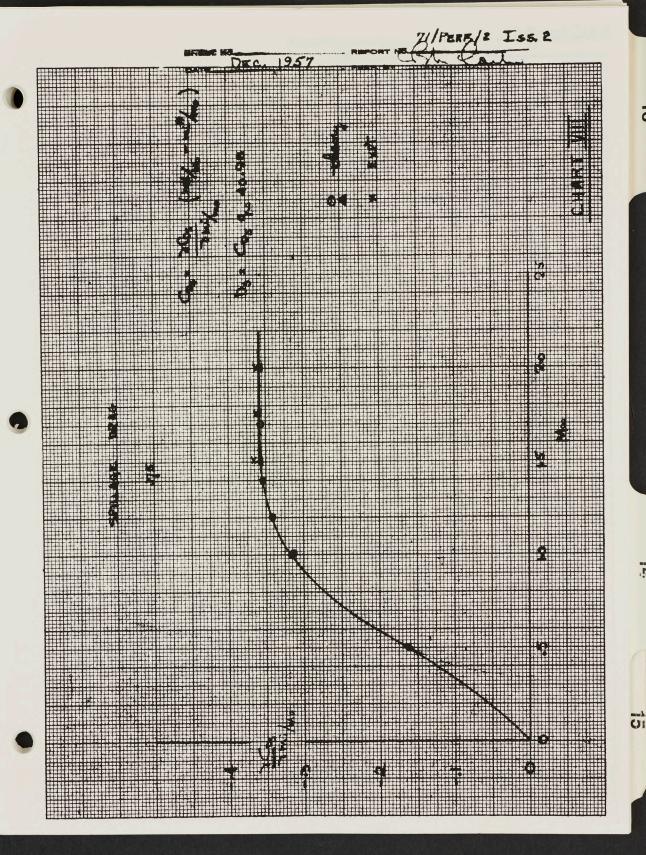
ARROW I

PERFORMANCE FLIGHT TESTS


REPORT NO. 71/PERF/2	pp. I
SHEET NO4	
PREPARED BY	DATE
R. Waechter	Nov. 1957
CHECKED BY	DATE


ACCURACY REQUIRED IN C.G. MEASUREMENT

- 1. At 50,000 feet & M = 1.5 & 1.5g, 1° change in elevator angle change aircraft dreg epproximately 4% (ref:- 72/PERF/4).
- 2. At 50,000 feet @ M = 0.9 to 2.0 @ lg, a shift of 2% MAC in C.G. position will change the required elevator angle for trimmed flight by 1° (2 0.2°)
- 3. 1° elevator change per 2% MAC ehift in C.G. position at 50,000 feet at M = 0.9 to 2.0 G lg is directly proportional to g loading and will epproximately double ite value at 60,000 feet.
- 4. Using 50,000 feet @ M = 1.5 @ 1.5g as design criteria, then 1.0 elevator change = 1.33% MAC shift in C.G. position 4.0% Change in A/C drag.


Therefore, for 1% error in drag, elevator angle must be measured to within \$\frac{1}{2}\$ or \$\frac{1}{2}\$ 0.25° and c.g. position must be measured to within \$\frac{1}{2}\$ 1.33/4 or \$\frac{1}{2}\$ 0.33% M.A.C. Since the total C.G. travel is only .52% M.A.C. (using fuel system proportioners) e complete flight from full fuel to no fuel need only be broken into 2 stages of constant mean C.G. position.

NA PERMIZ CONFIDENTIAL PRATT & WHITNEY AIRCRAFT JT4A-20, -28 & -26 TURBOJET ENGINES (Y175-P-1-3 3-11) JET NOZZLE GROSS THRUST COEFFICIENT AFTERBURNER LIT REF : CURVE NO. INST. 18151 FILE - JT4 GAS TURBING SPEC. PERF. AND CORR. FACTOR CURVES BOOK BASED ON MODEL TEST & ENGINE PERFORMANCE DATE Fg = Wta Aj Cg 4 - FROM CURVE NO. HAT 6624 (1255 PT) .90 - 6.39 8 59 FT (EST, OPERATING) 8 = 1.30 .75 PORTION OF CURKE IS CALCULATED AND NOT YET CONFIRMED BY TEST ROSS CHART IV 170 40 2.0 4.0 BO JET NOZZLE EXPANSION RATIO - TO

					AVR	0 -	NO	3EL			S T	R	FSI		8	Flo	R	Ų.
	1.1 G						7/2			34			D	/i) -		. 0	2
	1-74					F 64 X 64		NST	ALLE C E	D	WIT	(P	EJE(TO) G	ROS	S S S	TH
	1-19=																	
	/ / o																	
F _G /X _G	1-04			1								<i>/</i>						
	-01) }					/
	98																	
ā	94		1			Y						<i>\</i>	/					
	94		#			$\langle \rangle$												
	9.0																	
	٥	t c		21	D		3.0			6			5.0			6.0	P	a /
																		/

12

GI.