WEIGHT ESTIMATION DATA

It is assumed that the weight breakdown of the CF-105 type of fighter aircraft falls under the following main headings:

- 1. Structure
- 2. Undercarriage
- 3. Power Plant and Services
- 4. Flying Controls System
- 5. Equipment (Fixed and Removable)
- 6. Useful Load

The following fixed values and empirical formulae are suggested for the fighter configuration study.

1. Structure

(a) Wing

$$\frac{W_{W}}{S} = \frac{W_{c}^{0.8 \text{ AF}}}{150 \text{ b}} \left[1 + \frac{AF}{7} \left(0.818 + 1.68 \sqrt{0.013 + \lambda^{2}} \right) \right] + 2.20$$

where $W_{w} = wing weight (lb.)$

Wc = combat weight (lb.)

b = span (ft.)

S = gross wing area (sq.ft.)

$$A = b^2/S$$

 $\tau = 100 \cdot x = \frac{t}{c} = \frac{t}{c}$ thickness-chord ratio at section where bending moment is maximum (percent)

$$\lambda = \text{taper ratio } \frac{C_t}{C_r}$$

$$F = \sqrt{1 + \left[\tan \Lambda_{L,E} - 1.4 \frac{1-\lambda}{A(1+\lambda)}\right]^2}$$

 Λ_{LE} = leading edge sweep angle

(b) Horizontal tail (including elevator if any)

$$W_{\rm H} = 1.4 S_{\rm H}^{1.2} \left(1 + \frac{3}{2}\right)$$

where $S_H = \underline{net}$ tail area (sq.ft.)

(c) Vertical tail (including rudder)

$$\mathcal{L}_{\mathbf{v}} = 1.2S_{\mathbf{v}}^{1.2} \left(1 + \frac{3}{7} \right)$$

where $S_v = \underline{net}$ vertical tail area (sq.ft.)

(d) Fuselage

where L = fuselage longth (ft.)
F = maximum fuselage perimeter (ft.)

(e) Macelles (if separate from fuselage)

Wa (per nacelle) = 2.3xLxP

where L and P are length and parimeter of macelles.

2. Undercarriage

where We = s/c combat weight (1b.)
L = length of main undercarriage leg (ft.) from top
pivot to wheel axle.

3. Poser Plant and Gryices

9,919 lb. not including fuel system weight. This is value given in Sept., 1955 weight list.

Fuel system weight = 0.275 lb/gel. of internal fuel = 0.0367 lb/lb. fuel

4. Flying Controls System

where ba - span of each atleron (ft.)

Sa = alleron mean shord (ft.)

b. - rudder span (ft.)

Gr - rudder mean chord

bH = net apan of horizontal tail (not including imaginary portion in fusciage

on - mean chord of horizontal tail (ft.)

Inis equation assumes that the elevator mean chord is 0.4 x horizontal tail chord, and that if there is no elevator (all-moving tail), the hinge moment is the same.

5. Equipment (fixed and Bemovable) - 6527 lb. (Avro list)

6. Useful Load

Crew, oil, etc. 771 (includes residual fuel in system) Missiles $\frac{1042}{1813}$ lb.

Plus fuel for combat mission (to be worked out)