Honeywell First in Controls.

AUTOMATIC CONTROLS INDUSTRIAL VALVES BROWN INSTRUMENTS MICRO SWITCH PRODUCTS

TERMINATION REPORT HG32 AIR DATA COMPUTER

CR-ED 1061

HONEYWELL CONTROLS LIMITED LEASIDE, TORONTO 17, ONTARIO

OFFICES IN HALIFAX, QUEBEC, MONTREAL, OTTAWA, TORONTO, HAMILTON, SUDBURY, LONDON, WINNIPEG, REGINA, CALGARY, EDMONTON, VANCOUVER

UNCLASSIFIED

Classification cancelled/changed to....

TERMANASTON REPORT QUINOTITY OF P.

(date)

ON THE

HARD ATE DATA CAMPUMES

FOR THE

ASTRA SYSTEM

OF THE

CF-105 ARROW AIRCRAFT

May 1959

Systems Engineering & Military Products
Document CR-ED 1061.

Prepared by:

B.M. Schultz, Design Engineer, Military Products.

Approved b

Chief Dosign Engineer Wilitary Products

Honeywell Controls Limited Military Products, Poronto, Ontario

UNCLASSIFIED

INCLASSIFIED

1 GENERAL 1 2 RELEVANT SPECIFICATIONS 2 3 DESCRIPTION OF THE UNIT 3 3.1 General 3.2 Component Parts 4 4 DESCRIPTION OF PARTS 5 4.1 General Description 5 4.2 Pressure Data Section 5 4.2 Pressure Data Section 5 4.3 Air Density Computer 8 4.4 Air Density Computer 9 4.5 Total Temperature Computer 9 4.6 True Airspeed Computer 10 4.7 Angle of Attack Repeater 10 5 PERFORMANCE 12 5.1 Range 5.2 Gensitivity 13 5.3 Accuracy 14 6 PRESENT STATUS 16 7 PROPOSED FUTURE PROGRAM 17

TILUSTRATIONS

	4	

TERMINATION REPORT
ON THE
HG32 AIR DATA COMPUTER
FOR THE
ASTRA SYSTEM
OF THE
CF-105/ARROW ALGRAFT

1 GENERAL

The HG3PA-2 Air Data Computer was the main component of the YG719 Air Data Computer System, which was, in turn, part of the Astra Waspen: System designed for the Avro CF-105 aircraft

The Air Data Computer (Fig. 1) accepts inputs from the angle of attack sensor, the temperature sensor and the pitot-static system. It computes and corrects, as required, and provides air data outputs as needed by the Automatic Flight Control System, the Fire Control System, the Mavigation System, the Cockpir Instruments and other aircraft sub-systems.

The earliest air data instruments used in aircraft were altimeters and airspeed indicators operating from the static pressure and total pressure lines respectively. Both were adaptations of the simple sucroid barometer and were subject to many errors.

As aircraft became more complex, it was secessary to know other air data such as rate of climb
and deacent, Mach Bumber etc. Other aircraft eyetems, navigational computers, fire control systems
and automatic pilote required specific functions of
certain air garamaters. Each sub-system had incorporated within it, computers to calculate the
functions desired. Often the same function was computed in the same way from the same original data
in each of the sub-systems. This, of course, was
duplication of effort and beace uneconomical from
several viewpoints. The realization of this redundancy led to the concept of a central air data
computer which measures, computes, corrects and
supplies air data functions to all of the aircraft
sub-systems. The HG32A follows this concept.

Specification R-ED 875 "Preliminary Detail Specification for the YG719 Air Data Computer" outlines the general requirements for the A.D.C. The following Engineering Specifications (E.S.) which are internal documents used by Minneapolis-Honeywell define the component parts of the A.D.C. in greater detail

- a) ES 2032-1-A2 Air Data Computer System
- b) ES 2032-2-A2 Air Data Computer
- c) ES 2032-3-A2 Pressure Data Computer
- d) ES 2032-4-A2 True Airspeed Computer.

 Total Temperature Converter.

 Air Density Computer.
- e) ES 2032-5-A2 Angle of Attack Converter
- f) ES 2032-6-A2 Chassis specification
- g) ES 2032-7-A2 Potentiometer stacks

3. DESCRIPTION OF THE UNIT

3.1 General

The HG32 Air Data Computer is designed as a completely self-contained system. It is a compact light weight unit having a high degree of accuracy. It was designed to fit in the electronics bay of the CF-105 ARROW Aircraft.

3.1.1 Physical

The HG32 Air Data Computer measures 12 1/2 long, 16" wide and 8 1/2" high and weight 47 1/4 pounds.

3.1.2 Electrical

3.1.2.1 Inputs

Primary power is furnished to the Air Data Computer by the Aircraft electrical system as follows:

102 to 124V 400 cps + 20 cps single phase using 82 Volt-Amperes.

25 to 29V D.C. for energizing the clutches in the Air Data Computer. This power is obtained from the sub-system requiring the output.

3.1.2.2 Outputs

The following potentiometer outputs are provided:

	(Ps)
	(x 1)

Bynchro outputs are provided for differential pressure (q_0) , Δ log P_0 and Δ log R.

The functions of log R and / are provided as serve operated switches. Rate

UNCLASSIFIED

outputs of $\frac{d(\log P_0)}{dt}$ and $\frac{d(\log R)}{dt}$

are provided.

The potentiemeters and synchros are energized by the sub-system requiring the signal. This climinates phasing problems.

3.1.3 Mechanical

3.1.3.1 Inputs

Mechanical inputs to the Air Data Computer are in the form of air pressures, temperature detected by resistance wires, or angles and are as follows:

a) Total Pressure (Pg)

b) Static Pressure (Pg)

e) Angle of Attack (d)

d) Total Temperature (Ti)

3.1.3.2 Outputs

No purely mechanical outputs are provided.

3.2 Component Parts

The HG32 Air Data Computer consists of a chassis containing interconnecting cables, magnetic amplifiers and motor capacitors and mounting the following five modules.

- a) Pressure Data Section
- b) Air Density Computer
- c) Total Temperature Computer
- d) True Airspeed Computer
- e) Angle of Attack Repeater.

4. DESCRIPTION OF PARTS

4.1 General Description

Modular construction is used throughout this device. The modules simplify maintenance and provide adaptability of design to changing aircraft applications because it is possible to adapt a module to a new requirement with relatively minor changes. Each module is complete in itself, and most modules can be replaced without readjusting other modules. Replacements may be made with the use of simple wrenches and screw drivers only; no soldering or special tools are required. Two of the modules in the Pressure Data Section require phasing and are preadjusted before being assembled in the final assembly. All other units require only proper internal gear meshing. Interconnection between sections is purely electrical.

4.2 Pressure Data Section

The pressure Data Computer (Fig. 2) is a mechanical analogue computer which converts pitot-pressure (PT) and indicated static pressure (Ps) obtained from the aircraft pitot-static system, into the desired electrical outputs from these parameters. This section consists, functionally, of the pitot and indicated static pressure transducers and servo loop, a static pressure error corrector servo loop, a mechanical computer, and the pressure data output devices. The converting, computing, and output functions are combined into one continuous mechanism for optimum performance.

The pitot and indicated atatic pressure transducers sense pitot (ram air pressure) and static pressure (eltitude) by means of servoed rebalance mechanisms. The outputs of these transducers are shaft rotations proportional to log PT and log Ps. Static pressure error is computed and the proper correction applied by the Static Error Corrector servo loop. (The static pressure error versus Mach number relationship is a characteristic of the particular nose boom and pitot sensor combination).

A typical pressure transducer is shown diagramatically in Figure 3. Two bellows, one sens-

UCLASSITIED

ing and one reference (evacuated) are mounted in opposition to each other. The outer believs headers are mounted to the transducer structure and the inner headers are joined by a rigid link. The differential force from the believs is transmitted to a reed suspended sense beam by means of a flexible tape which is always in tension. The sense beam serves as a direct motion multiplier to the highly sensitive inductive signal pick-off. One end of a torsion bar rehalance spring is coupled to the sense beam at its pivot point through a coaxial tube which also serves as part of the beam mounting in the X-reed suspension. The cam follower is mounted on the other end of the torsion bar spring and is rotated by a contoured cam which, in this case, generates a logarithmic function. The log cam is on the output shaft of an adjustable cam.

A change in pressure in the sense bellows results in an unbalance of forces on the sense beam and a consequent slight rotation. The resulting movement of the slug in the inductive pick-off generates a signal which is fed to a phase sensitive amplifier which causes a servo motor to drive a mechanical linkage to restore the slug to its null position by rotating the torsion bar. The mechanical linkage consists of a gear train which drives through an adjustable cam which corrects any repeatable errors due to cam contours, gear irregularities etc. The output of the adjustable cam connects to the log-cam which imports a non-linear (logarithmic) rotation through the follower arm to the torsion bar spring and sense beam to restore the beam and inductive pick-off to its null position.

The Ps and the PT transducers are identical with the exception of the torsion bar rebalance springs. The torsion bar springs, which do not have a changing centre of gravity to produce a shift in static balance, have spring rates to match PT and Ps pressure ranges. The pressure ranges of the two units are scaled to make the log came identical.

To compensate for the sensitivity of the sense beams to angular accelerations, a second beam with the same polar moment of inertia is coupled to it in phase opposition. The whole

HC/MP Document CR-ED 1061

UNGEÁSSIFIED

LNULHSSEED

system is also carefully statically balanced to reduce position error to a minimum. Materials have been selected to minimize the effects of temperature, and further compensation is accomplished by means of a bimetullic element acting on the sense beam.

The Mechanical computer receives as inputs shaft rotations proportional to the logarithms of PT and P3 from the pressure transducers, and angle of attack information from the angle of attack repeater. In addition, an internal loop, the static pressure corrector, stores data relating P/P3 to indicated pressure ratio PT/P3, and supplies the correction necessary to provide a true static pressure P3 as a shaft rotation, (P is a function of pressure obtained as an intermediate computation stage). Outputs are provided as follows:

- a) Ps, log Ps, and h The output of the static pressure corrector is a shaft rotation proportional to the logarithm of (1 + P/Ps). When this shaft rotation is combined with the shaft rotation proportional to log Ps by means of a differential gear, the output shaft rotates as a function of log Ps. By means of an adjustable cam the log Ps shaft rotation is converted to a shaft rotation proportional to h (Pressure altitude). Further, by the use of a solid cam and an adjustable cam, the log Ps shaft rotation is converted to a shaft rotation proportional to Ps. Shaft rotations of log Ps, h and Ps are available simultaneously.
- b) hog R and Mach Number The combination of shaft rotations proportional to log Ps and PT by means of a differential gear results in an output shaft rotation proportional to log R. This shaft rotation may be converted to a shaft rotation proportional to Mach number by use of an adjustable cam. Shaft rotations proportional to log R and Mach number are available simultaneously.

UNCLASSIFIED

- c) Impact Pressure As mentioned above, the cam-follower shaft of the transducer has a rotation proportional to the sensed pressure. A transmitting synchro attached to this shaft on the total pressure transducer provides an electrical signal proportional to total pressure as an input to a differential synchro whose rotor is positioned by the P_B shaft. The electrical output of this differential synchro is the difference between PT and P_S, and is proportional to q_C.
- d) Rate Signals Electrical rate signals are available from the velocity generator sections of the PT and Ps loop servo motors. These voltages are proportional to

 $\frac{d \log P_S}{dt}$ and $\frac{d \log P_T}{dt}$. The two voltages

may be summed to provide d log R or may

be used separately. The sum provides the rate portion of the Mach Hold signal and d log $P_{\rm S}$ provides the rate portion of dt

the Altitude Hold signal

4.3 Air Density Computer

The Air Density Computer (Fig. 4) accepts potenticmeter voltage input signals proportional to Mach number (M), altitude (Pg) and total temperature TT1 and supplies signals proportional to air density to the using sub-systems.

The computation of air density is based on the following equations:

$$P = \frac{P_{g}}{R^{2}T}$$

$$= \frac{1}{R^{2}} \left[\frac{P_{g} (1 + 0.2M^{2})}{T_{T}} \right]$$

$$= P_{g} (1 + 0.2 KT_{g} M^{2})$$

where:

Pis air density in slugs per ft.3

HC/MP Document CR-ED 1061

UNILLSTED

UNGLASSIFIED

Ps is static pressure in psf

M is true Mach number

To: is indicated total temperature in "R.

R' is gas constant for air.

4.4 Total Temperature Computer

The Total Temperature Computer (Fig. 5) accepts a variable resistance signal proportional to indicated total temperature from the remote temperature sensor. It repeats this signal and supplies signals proportional to indicated total temperature to the Air Density Computer, the True Airspeed Computer and to using sub-systems.

The computation of total temperature is based upon the characteristic equation of the probe used. The TG4A-1 temperature probe has a platinum resistance element which follows the Callendar-Van Dusen equation:

$$\frac{Rt}{R_0} = 1 + \alpha \left[t - \delta \left(\frac{t}{100-1} \right) \left(\frac{t}{100} \right) - \beta \left(\frac{t}{100-1} \right) \left(\frac{t}{100} \right)^3 \right]$$

where:

Re is probe resistance at temperature t in °C.

R is probe resistance at 0°C = 50 ohms.

X 1s 0.003925

S is 1.45

B is zero for temperature above 0°C., and 0.10 for temperatures below 0°C.

4.5 True Airspeed Computer

The True Airspeed Computer (Fig. 6) accepts potentiometer voltage input signals proportional to Mach number (M) and Total Temperature (Tm;) and supplies signals proportional to true airspeed to the using sub-systems.

The computation of true airspeed is based on the following equation:

UNCLASSIFIED

$$V = M C_{S}$$

$$= MC_{SO} \frac{T}{T_{O}}$$

$$= 29.05M \frac{T_{T_{1}}}{1 + 0.2 K_{T_{S}} M^{2}}$$

where

V is true sirspeed in knots

Tri is indicated total temperature in degrees. Rankine

M is true Mach number

Kys is temperature sensor recovery factory (assumed constant at 0.98)

Cs is speed of sound in knots.

Cso is speed of sound at zero "R.

4.6 Angle of Attack Repeater

The Angle of Attack Repeater (Fig. 7) accepts an electrical synchro input signal representing indicated angle of attack from the alpha vane (4) mounted on the nose boom of the aircraft. It repeats this signal and supplies signals proportional to the indicated angle of attack to the using sub-systems.

4.7 Self Test Feature

The "Self Test" feature was added to the HG32 Air Data Computer circuitry to cause all the output devices to rotate to positions corresponding to the following air data conditions:

Ps = 242.2 psf (h = 50,000 ft.)

v = 500 yds/sec (Mach = 1.550)

p = .000362 slugs/ft3 (T = 573.6°R)

A = 0 degrees.

The self test feature is actuated by applying

HC/MP Document CR-ED 1061

UNGLASSIFIED

UNGLASSIFIED

28v d.c. to a test relay inside the A.D.C.
Access to the relay is obtained through the test
connector on the chassis. Connections to one
output potentiometer on each of the cutput shafts
(Ps log Fs, h, M, V, P, Tgi and d) are also accessible at the test connector so that measurements
may be made of potentiometer ratios under the
test conditions (Fig. 7). This test feature checks
the circuit operation of the entire A.D.C., with
the exception of the pressure transducers. Upon
removal of the 26V on the test relay all outputs
will return to the ambient values so that transducer faults may be determined.

Test conditions are imposed upon the circuitry by the relay switching out the normal inputs from the transducers and substituting for them circuits of fixed value components. The circuit values correspond to the outputs that would be expected from the transducers when the transducers themselves are tested.

HC/MP Document CR-ED 1061

UNGLASSIFIED

5 PERFORMANCE

5.1 Ranges

5.1.1 Operating Ranges

The operating range of the HG32 Air Data Computer was based on the assumed flight envelope of the aircraft.

- a) Indicated Static Pressure (Pg) Transducer: 40 to 2420 p.s.f.
- b) Total Pressure (PT) Transducers: 80 to 4840 p.s.f.
- c) Ram Temperature (T1) Transducer: 350° R to 1000°R.
- Angle of Attack (%) Transducer: -5° to +20°.
- e) Static Error Corrector: Ps/Ps may vary from 1.055 to .99.

5.1.2 Output Ranges

|--|--|

k) hog Ps

1.7579866 to 3.341201 (57.3 to 2194 p.s.f.)

1) A Log Pg

+ 500 ft./+ 70° shart rotation at 36,089 ft.

m) Pressure altitude (h) -1000 to 80,000 ft

5.2 Threshold Sensitivities

5.2.1 Inputs

Threshold sensitivity is defined as the minimum amount that the input must be changed to produce a recognizable usable output.

- a) Indicated Static Pressure Transducer Assumed to be less than .001 incl mercury independent of measured pressure.
- b) Total Pressure Transducer Assumed to be less than .001 inch mercury independent of measured pressure.
- c) Ram Temperature Transducer Theoretically infinite.
- a) Angle of Attack Transducer Theoretically infinite.
- e) Static Error Corrector Less than .001

5.2.2 Outputs

- a) Ps 0.1% of rull range = 2,137 p.s.f.
- al Pm less than .001 inch moreury
- ol of full range = 4.78 p.s.f.
- a) N 0.1% of full range = 0.0022 Mach
- e) v 0.15 of full range = 1.4 knots
- f) Ta 0.1% of full range = 0.650°R
- 0.15 of full range .032 x 10-4 slugs/ft.

UNCLASSIFIED

- b) 0.1% of full range = 0.025°
- i) Log R 0.1% of full range .000885 log 10
- j) A Log R 0.15 of full range = .0001 Mach at .8 Mach.
- k) Log Po equivalent to Po threshold
- A Log P₃ 0.1% of full range = 1 ft. at 36,089 ft.
- a) h 0.1% of full range = 81 ft

5.3 Accuracy

Accuracies have been estimated on the basis of known or estimated capabilities. Errors have been combined on a root-sum-square of six.

- a) Static Pressure .07% of indication at sea level, 1.06% indication at 80,000 ft. (Includes pot linearity.)
- h) Total Pressure 2% of indication
- e) Mach Number . 15 of indication
- a) Differential 2 to 3% of indication
- e) Air Density 15 of indication
- f) True Airspeck 19 of indication
- g) Total Temperature 0.5% of indication
- h) Angle of Attack 0.5 degrees or better
- i) Low H same as Nach Humbell
- 1) A Log R 25 of full displacement
- k) Log P. same as static pressure
- 1) A Log Pa 25 of full displacement
- m) Pressure Altitude 0.25% h + 20 ft.

y.4 Actual Performance

The development program was cancelled before a full evaluation of performance characteristics and he made. However, some of the modules were

UNGLASSIFIED

given ruther extensive, although informal, tests. The results of these informal tests led the signers to believe that no difficulty would be encountered in meeting the full requirements.

HC/MP Document CR-ED 1061

UNGLASSIFIED

Two complete HG32A-2 Air Data Computers have been produced. These units are now in Mine spolis and are awaiting shipping instructions. In addition, several modules have been completely assembled and tested, and parts for several others have been manufactured. These modules, partial assemblies, parts, and components have been gathered together and are in storage in Minneapolis, swelting disposal instructions from the contracting agencies.

HC/MB Document CR-ED 1061

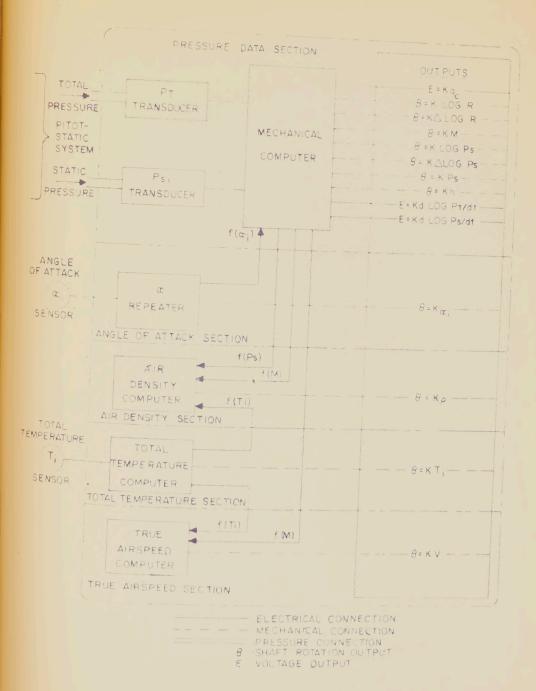
UNULASSIFIED

The specific future of the HG32 Air Date Computer design is not known. However, the experience guined in the design and development of this first known central air fata system vill be applied to other existing and future air data systems. Surificient information has been gained, in spite of the untimely and rather unfortunate denice of the project, to prove that the basic concepts and methods of instrumenting them are very sound.

The two sompleted systems are believed to be avoidable to the National Research Council for evaluation purposes. This document has been propared to aid N.R.C. in such as evaluation. The experience obtained by the Caradan angineers working on the project is also available to aid N.R.C., should such be desired.

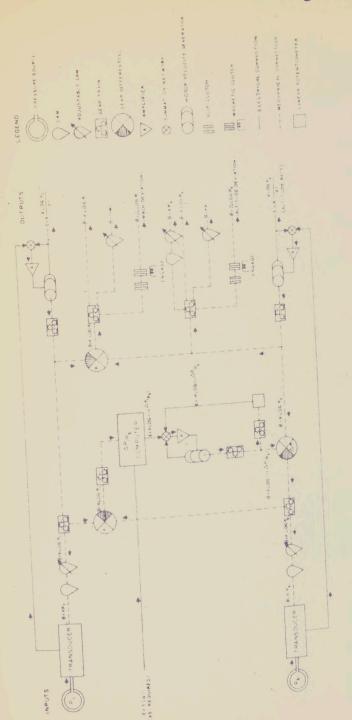
UNCLASSIFIED

8 CONCLUSIONS


The MGSE Air Data Computer was specifically designed to neet the requirements of the Asiro Ricectronics System. The unit, therefore, remembers a design starting with first principles remembers then a modification of an existing device. Euch a design concept has several advantages. The central packaging approach parallel a unified design which provides:

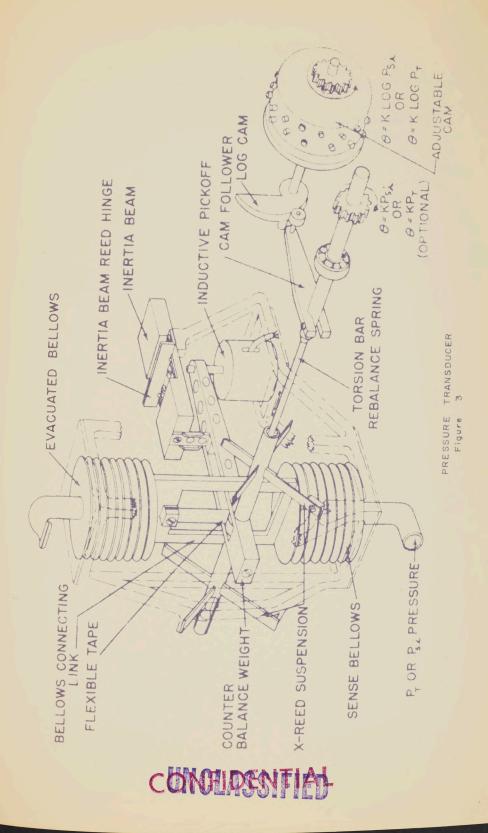
- a) Upage and relight whether The modisional weight and volume of reposters and corrections uply their bankaging is not imposed upon the total system.
- b) Better reliability Paver components, interconnections and less basiling means a large gain in reliability.
- o) Dase of maintenance 4 The single unit concept means capier and laster servicing, tenting, maddles and capling problems are greatly reduced.
- a) herrer securacy and resolution A single wait gives the greatest possible ascuracy and resolution of sutput functions at there is no look out to the repeating of functions from unit to unit

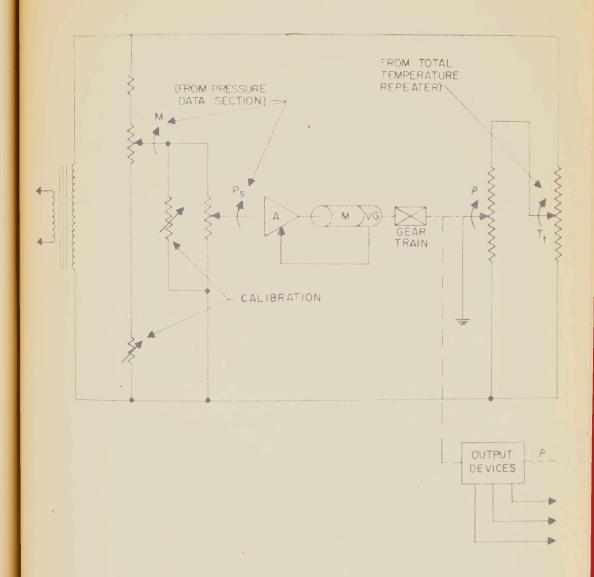
puter, Reveral important advances were made in cutponent design.


Berennet is the present transmost with torsion ber rebulance and pred suspension. This economical is fully described to Saction 4.2 of this report. Also developed the a test high Minearity potention meter. These potentioneters are of no inch diameter and of year short axial length making them excellent for stacking purposes in computers. Accuracy is

CONGENSEAFTERL

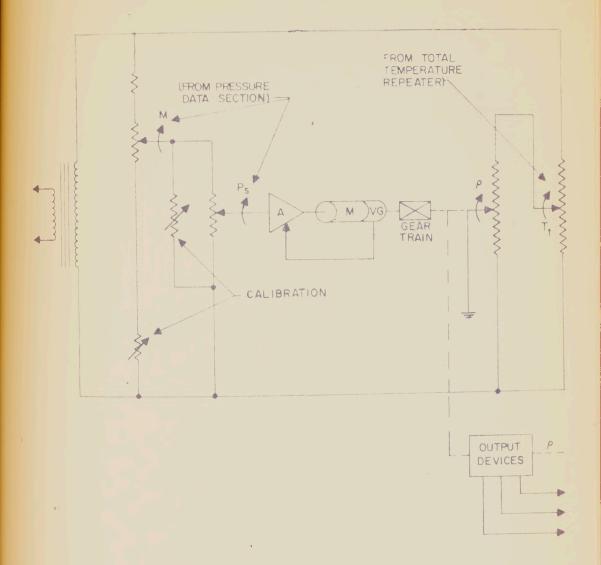
Air Data Computer General Block Diagram
Figure |


CONFIDENTED

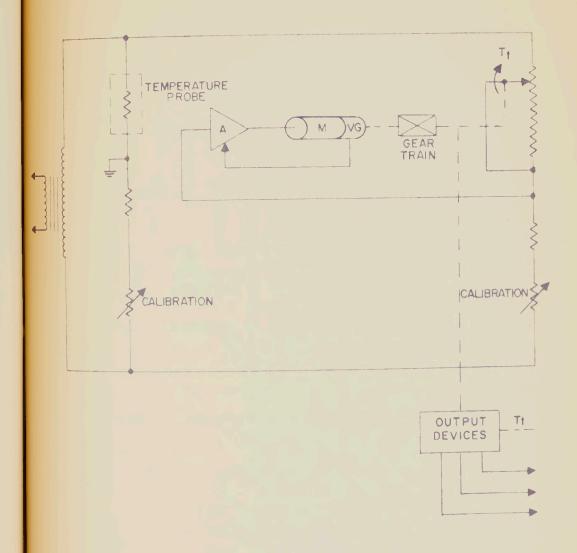

Detail Schematic Diagram of Pressure Data Section Figure 2

CUNTIFICATION

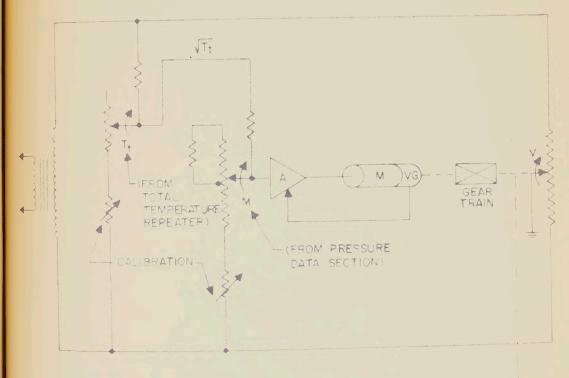
CONFIDENTIAL


CONFIDENTIAL

Static Air Density Computer Schematic Diagram
Figure 4


CONFIDENTIAL

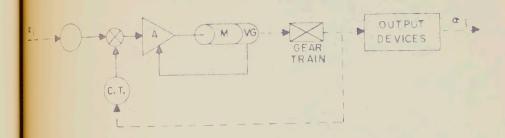
CONTIDENTIFE

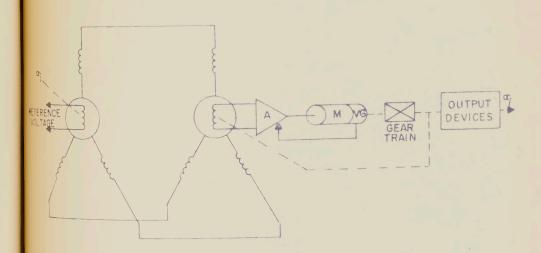

Static Air Density Computer Schematic Diagram
Figure 4

CONFIDENTIAL

Total Temperature Computer Schematic Diagram
Figure 5

CONFIGUREDAL




OUT PUT V DEVICES

True Airspeed Computer Schematic Diagram
Figure 6

CONFIDENTIAL

CACEASSMIEDL

Angle-of-Attack Repeater Schematic Diagram
Figure 7

CONFIDENTIAD

