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SUMMARY

The induced drag factor for delta wings with
approximately 60 degrees of leading edge sweepback is found
to be affected greatly by the aerofoil section shape. For
thin sections (e.g. 5 percent) or thick sections with sharp
noses the induced drag factor varies between 0,40 and 0.50.
For thick sections (e.g. 10 percent) values of 0.8 and 0.9

% The information contained in this report is taken from
an unpublished report written in April, 1952,
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THE INDUCED DRAG FACTOR OF HIGHLY SWEPT DELTA
WINGS AT SUBSONIC SPEEDS

1.0 INTRODUCTION

It has recently been observed that several subsonic
performance calculations on aircraft fitted with delta wings
having leading edge sweepback of the order of 60 degrees have
been based on assumed span efficiency factors of 0.80 to 0.85.

The above values of e can be obtained with con-
ventional straight-wing aircraft, but there are indications -
of an adverse sweepback effect on e (e.g. Ref. 1), However,
the data collections available on this matter contain little
information for delta planforms.

In view of this it was considered worthwhile to
make a collection, from the available literature, of span
efficiency factor data for delta wings with approximately 60
degrees of leading edge sweepback. (The values of leading
edge sweepback considered herein vary between 58 and 63
degrees.)

In this survey an attempt was made to find data on

the independent effects of Reynolds' Number and high subsonic
Mach Numbers,

2,0 EXPERIMENTAL DATA

2.1 Low Speed Data

The experimental data collected for delta wings
with leading edge sweepback angles in the range 58 to 63
degrees are plotted in Pigures 1 to 3. The data were taken
from References 2 to 16, and apply only to "unclipped"
(i.,e. zero taper ratio) delta wings.

In calculating the value of e from the various
references, small scale graphs usually had to be read (as
opposed to tabulated data) and therefore some error and
scatter has inevitably occurred. Also, the curve of CL2
against Cp for a given wing tends to lose 1its linearity or

maintains it over a smaller range of CL as the Reynolds!

Number is reduced. This becomes particularly pronounced in
the Reynolds'! Number region below four million.
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The values of e in the present report were
calculated from the drag data for the 1ift coefficient
range from O to 0O.4.

The data in Figure 1 correspond to aerofoil
sections having a non-zero leading edge radius and a thickness
chord ratio of 0.10 or greater. (The data for the DM-1 glider
will be discussed in a following section.)

Above a Reynolds' Number of 4 million, e reaches
values approaching 0.90, whereas below this value of Reynolds!
Number e varies between 0.55 and 0.85.

It can be noticed that the wings with larger thick-
ness chord ratios tend to have higher values of e, and this
is especially true at the low Reynolds! Numbers. The value
of e for the 58 degree delta wing appears much lower than a
wing of the same thickness ratio. This may be due to a
Reynolds' Number effect associated with the particular aero-
foll section, or it might be due in part to the fact that the
chordwise position of the maximum thickness is farther back
than for the other wings, hence resulting in a smaller nose
radius. It will be shown in a following section that nose
radius has an important effect on e,

Figure 2 contains values of e for delta wings with
aerofoil sections having either a very small nose radius
(approaching zero) and/or a small thickness to chord ratio
(around 0.05).

The majority of the data in this figure are grouped
around a value of e equal to 0.47. The data for thin sections
at low subsonic speeds in Figure 3 are in the range covered by
the majority of the data in Figure 2. Hence there appears to
be no Reynolds' Number effect on e for delta wings with thin
aerofoll sections in the Reynolds!' Number range of 3 x 106 to

28 x 108, This latter statement is made mainly on the basis
of sharp nosed aerofoils and for plane (i.e. untwisted and
uncambered) wings.

Two of the points in Figure 2 do not follow the
general trend. One of these is for a flat plate aerofoil
which has an e value of 0.372. This is probably due to the
reduced thickness ratio and nose radius. The other point is
for a wing-body-fin combination with a modified N.A.C.A. 0005
section which has an e value of 0.575. This higher value might
be due to a larger leading edge radius (a radius of 0.275
percent chord) than that associated with the other sections.
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H9weve?, the data for a similar section in Figure 3 fall in
l%ne with the majority of the data in Figure 2. The data in
Figure 5 are at a lower Reynolds' Number and hence there might
concelvably be a Reynolds'! Number effect.,

It is not too clear how the data in the Ames full
scale tunnel (where the majority of the data in Figure 2 and
for the point in question were obtained), were corrected for
strut tare, interference and alignment; different procedures
could cause variations in e.

No mention has been made of the fact that some of
the data are for wings alone and some for wing-body combina-
tions because, as can be seen from the data in Figures 2 and
S, the addition of a fuselage does not change e from the wing
alone value,

2.2 Data at High Subsonic Speeds

Figures 3 and 4 contain the available data on e at
high subsonic speeds. The data in Figure 3 are deduced from
wind tunnel tests and those in Figure 4 from a free-flight
test (Ref. 17).

For plane wings, Figure 3 shows the improvement in
e caused by an increased thickness chord ratio (or nose
radius); however for the 8 percent thick sectlion e is reduced
as the Mach Number increases. Mach Number has little effect
on the thin sections (3 and 5 percent thick) and, if anything,
e increases with Mach Number (the same trend is seen in Fig. 4).
The e values in Figure 3 for "twisted and cambered" wings are
substantially better. These wings are designed to have a
uniform loading at a Mach Number of 1.5,

The free-flight data in Figure 4 agree well with the
data of Figure 2 at the lower Mach Numbers, although the aero-
foil thickness ratio is higher (6.5 percent) than that for the
ma jority of the wings in Figure 2.

3,0 DISCUSSION

Some observed characteristics of the flow about
delta wings help to interpret the collection of induced drag

data presented herein.

During the tests described in References 6 and 18
a "separation vortex" was observed to spring from the leading
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edge when the wing was tested at incidence. _A schematic
diagram illustrating this flow is given in Figure 5, This
type of flow has been found to be associated with thin aero-
foils. Also during wind tunnel tests on a 1/15-scale model
of the DM-1 glider (15 percent section) this type of flow
was observed., However, it was not observed during tests on
the full-scale glider (Ref. 4), Placing a metal strip over
a portion of the centre span produced this type of flow on
the full-scale glider. This resulted in a reduction of e
(see Fig. 1) and also increased considerably the maximum 1ift
coefficient. (A correlation between CLmax and section shape

is made in an unpublished report and it is found in general
that wings with aerofoil sections producing a separation vortex
have higher values of CLmax')

Assuming that a delta wing of the planform discussed
herein can be treated by slender wing theory (e.g. Jones'
theory) then the separation vortex is a function of the trans-
verse section of the wing (see Fig. 5). In view of this it
can be clearly seen that a sharp nosed section will cause a
separation of the transverse flow which, combined with the
longitudinal component, produces the separation vortex.
Rounding the leading edge of the wing will tend to reduce the
severity of the adverse pressure gradient through which the
transverse flow must travel.

Alternatively it can be stated that the separation
of the boundary layer in the region of the nose of the wing
will depend on the pressure gradient along the streamline in
this region. The pressure distribution in this region is a
function of all the geometrical section parameters; however,
for a given thickness ratio the tendency for leading edge
separation at incidence will increase as the nose radius is
reduced and for a given finite nose radius the tendency for
separation will increase as thickness ratio 1s reduced,

The value of e calculated from the potential flow
spanwise loading is close to unity as the loading for such
wings is approaching elliptic loading. Therefore the low
values of e found for thin or sharp nosed delta wings are
associated with viscous phenomena and, keeping in mind the
above discussion of the separation vortex, a study of Figures
1 and 2 leads to the conclusion that this is responsible for
the variation of e with section shape.

It is found with conventional aerofoil sections
that laminar separations near the leading edge tend to occur
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at incidence when the Reynolds!' Number is low. It was no
doubt such reasons that caused the separation vortex to form
for the 1/15-scale model of the DM-1 glider and is also
responsible for the reduced values of e at low Reynolds!
§umberi)for delta wings with conventional aerofoil sections
Fig. °

For aircraft performance estimation the e for the
complete aircraft must be estimated. The data herein
indicate that the e for a wing=body combination is approxi-
mately the same as the e for the wing alone. The effect of
a horizontal tail surface on e depends on the downwash field
at the tailplane and the aircraft centre of gravity position.

Unorthodox aircraft configurations such as the
DM=-1 glider can have values of e much less than that for the
wing alone. In this case adding a large vertical tail
(housing the pilot at the root) caused a considerable
disturbance to the flow over the wing (as observed by wool
tufts) and not only reduced e from 0,91 to 0,65 but reduced
the maximum 1ift by an appreciable amount,

4,0 CONCLUSIONS

A literature survey pertaining to the span
efficiency factor, e, of delta wings with leading edge sweep-
back of 60 degrees or thereabouts and with no camber and
twist, has led to the following conclusions:

(1) At Reynolds' Numbers below about 4 x 106, a leading
edge separation vortex (Fig. 5) forms at incidence regardless
of the aerofoil section. This separation vortex is probably
of stronger intensity for thin and/or sharp nosed sections,

(2) At Reynolds' Numbers above 4 x 106 a separation
vortex is found only for thin (e.g. 5 percent) and/or sharp
nosed sections.

(3) Wings that exhibit a separation vortex have lower
values of e than wings without such a flow, indicating that
leading edge separations are responsible for the low values
of e,

(4) At Reynolds' Numbers from 4 to 9 million (the
limits of the available data) the values of e for thick
sectioned wings (e.g. 10 percent) range between 0.8 and 0.9,
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(5) At Reynolds' Numbers of 3 to 28 million (t@e limits
of the available data) the values of e for thin sectioned
and/or sharp nosed wings range between 0.4 and 0.5.

(6) Increasing the Mach Number up to the drag rise,
does not appreciably change the value of e for thin sectioned
wings (i.e. 3 to 5 percent). Tests on a wing with an 8
percent section showed a decrease of e with an increase in
Mach Number.

(7) Por thin sectioned wings, at any rate, adding a
fuselage (and vertical tall) does not appreciably change e
from the wing alone value, However, unorthodox arrangements
(Fig. 2) may cause large changes in e,

The above conclusions refer to plane wings;
however, some tests on twisted and cambered wings with 3 and
5 percent sections (Fig. 3) show that an appreciasble gain in
e can be obtained by this means.
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SYMBOL REPORT ASPECT RATIO { SWEEPBACK AEROFOIL

(@) ACR 11,354 2.31 60° t/c =0.10

8] NACA RM L6K20 1.8 60° NACA 0015-64

s SAME AS [0 EXCEPT FOR SHARP LEADING EDGE

a SAME AS [J EXCEPT FOR VERTICAL FIN

A NACA TM 1176 2.0 63° NACA 0012

4 KTH AERO NO.4 2.50 58° FFA 104-5106 (t/c=0.10)

é —0O

0.90

w/”””—éy———‘—i
A |t
Toao 1//// o] ]

EFFICIENCY

—_—

|

DM-I1 GLIDER

070 @ £

0.60

AEROPLANE

63° WING-BODY
NACA 0008 -63
q M=0.4

RM A50 K20
(See Figure 3)

I 2 3 4 5 6 7 8 9
REYNOLDS' NUMBER x 10

0.50

94

AEROPLANE EFFICIENCY AGAINST REYNOLDS' NUMBER (M<0.13)

GOoI-H1
|




Re BASED ON MAC, MACH NO<0.1B, SWEEPBACK (L.E.}=63° AR=2.0
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10 percent) values of 0.8 and 0.9
The above results apply for
Numbers of 4 million or greater.
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On the basis of limited data 1t appears that the
induced drag factor for thin sectioned wings does
not change over the subsonic Mach Number range.
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On the basis of limited data it appears that the
induced drag factor for thin sectioned wings does
not change over the subsonic Mach Number range.
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