
QCX Arro CF105 P-WT-137

Templin

AERO / M.E. LIBRARY

89- 05-12

BIBLIOTHÈQUE AÉRO / G. M. CNRC - ICIST

CF-105

SPARROW TRAJECTORY TESTS.

OBJECT

To Determine:

- (a) Missile characteristics at various trajectory positions along the fuselage
- (b) Errors due to manufacturing inaccuracies of missile models. (For example: 1° distortion of Sparrow tailplane yields $\Delta C_{\rm M} = 0.21$ $\Delta C_{\rm N} = 0.054$)

In order to fulfill these conditions it is considered necessary to obtain 5 points in pitch and 5 in yaw. To eliminate inaccuracies at least 2 additional points will be needed at each trajectory position with the missile inverted.

METHOD

A proposed solution to the mechanical difficulties involved is to use a combination of rotatable eccentric sting and concentrically and eccentrically drilled missiles.

The following will be required for each missile at each trajectory station:

- (a) Sting that can be rotated and locked in four positions (θ = 0, 90, 180, and 270°) carrying a 4 component strain gauge on an eccentric spindle (giving Q = 1.0, $\beta = -1.0$, Q = -1.0, $\beta = +1.0$) in the 4 positions.
- (b) Missile model with a 1.0° eccentric mounting hole
- (c) Missile model with a concentric mounting hole. With these, the combinations in the following table can be achieved giving 5 points in pitch and 5 in yaw.

Possible errors can be eliminated by averaging runs 7 and 8 (for the concentric missile) and 5 and 6 (for the eccentric missile) and applying the corrections to all other runs.

C.A.L. WIND TUNNEL PROGRAM

1. ARMAMENT

Instrumentation: 4 component missile balance

2 component main balance

= 0, d range: -4, -2, 0, 2, 4, 6, 8, 10, 12

(a) High Trajectory - Missile No. 1

Mach No.: .95 and 1.20

Stations: 1, 2, 3 and 4 Angles: (1, 0, 0) + (1, 0)(plus 8 check points)

80 runs

(b) High Trajectory - Missile No. 2

As in l(a)

80 runs.

(c) Low Trajectory - Missile No. 3

As in l(a)

80 runs

(d) Low Trajectory - Missile No. 4

As in l(a)

80 runs

(e) Missile No. 3 - Rolled 45°

Mach No.:

.95 and 1.20 .

Station: Angles:

 $\vec{a}, \psi = 0, \pm \sqrt{2}$ (5)

10 runs

330 runs.

2. CANOPY

(a) Hinge Moment in Yaw

Instrumentation: 4 h

4 hinge moment balances

2 canopy stat'c pressure taps (6 component main balance)

 $Q = 2 \ \text{$\not$10}, \ \text{$\forall$ range: $-2, $-1,$}^{\circ}0, \ 1, \ 2, \ 4, \ 6$

i. Forward closed, rear opening in stages

M = .80, .95, 1.00, 1.05, 1.10, 1.20

Positions: 1/3 and 2/3 open

24 runs.

ii. Rear open, forward opening in stages

As in 2(a)i

24 runs

iii. Rear closed, forward opening in stages

.80, .95, 1.05, 1.20 Positions: 1/3 and 2/3 Open

16 runs

iv. Forward open, rear opening in stages

.95 and 1.20 Positions: 1/3 and 2/3 open

8 runs

Both opening in stages

As in 2(a) iv.

8 runs

(b) Effect on Directional Stability

Instrumentation:

4 hinge moment balances

2 canopy static pressure taps

6 component main balance

 $Q = 2 \not\in 10, \forall \text{ range}: -4, -2, -1, 0, 1, 2, 4, 6, 8, 10, 12$

M =

.80, .95, 1.00, 1.05, 1.10, 1.20

1. Both closed

12 runs

ii. Both open

12 runs

iii. Front open, rear closed

12 runs

iv. Rear open, front closed

12 runs

(c) Hinge Moment in Pitch

Instrumentation:

4 hinge moment balances

2 canopy static pressure taps

a =

-4, -2, 0, 2, 4, 6, 8, 10, 12

M =

.95 and 1.20

¥ =

With positions 1/3 and 2/3 Open

- Forward closed, rear opening in stages i.
- ii. Rear open, forward opening in stages
- Rear closed, forward opening in stages iii.
- Forward open, rear opening in stages iv.
- Both opening in stages. V.

2. (c) With no intermediate positions:

vi. Both closed

vii. Both open

viii. Front open, rear closed

ix. Rear open, front closed

All of section 2(c) to be run in conjunction with 1.

128 runs.

3. DIRECTIONAL STABILITY

Instrumentation: 6 component main balance

M = .80, .95, 1.00, 1.05, 1.10, 1.20 $\psi =$ -4, -2, -1, 0, 1, 2, 4, 6, 8, 10, 12. Q = 2 and 10

(a) Missiles in Stowed Position

12 runs

(b) Boundary Layer Bleed Exhausts Removed

12 runs

24 runs

4. AILER ON EFFECT IVENESS

Instrumentation: 6 component main balance 1 hinge moment balance

1 hinge moment balance

M = 0.95 and 1.20 Q = 0.95 and 1.20Q = 0.95 and 1.20

 $\delta_{A} = -10, -5, 0, 5$

To be run in conjunction with 1

0 runs.

5. RUDDER EFFECTIVENESS WITH CANOPY

Instrumentation: 3 component tail balance

1 hinge moment balance

M = .95 and 1.20

q = -4, -2, 0, 2, 4, 6, 8, 10, 12

 $\delta_{r} = 20, 10, 5, 0, -5$

- (a) Both canopies closed
- (b) Both open
- (c) Front open, rear closed
- (d) Rear open, front closed.

To be included in 1.

6. FIN PITOT-STATIC PRESSURES

Instrumentation: 2 pressure pick-ups

(a) In Yaw

M = .80, .95, 1.00, 1.05, 1.10, 1.20 Q = 2 and 10 V = -4, -2, -1, 0, 1, 2, 4, 6, 8, 10, 12

i. Upper combination only: short static and dynamic head

ii. Upper and Lower combinations: short static and dynamic head

To be included in 3.

(b) In Pitch

M = .95 and 1.20 $\psi = 0$ Q = -4, -2, 0, 2, 4, 6, 8, 10, 12

i. Upper combination only:

Short and long static heads short and long dynamic heads

ii. Upper and lower combinations:

short and long static heads short and long dynamic heads

To be included in 1.

0 runs.

7. TUFTS

Instrumentation: Camera

M = 0.80, .95, 1.00, 1.05, 1.10, 1.20 $\psi = 0.4, -2, -1, 0, 1, 2, 4, 6, 8, 10, 12$ Q = 0.80, .95, 1.00, 1.05, 1.10, 1.20Q = 0.80, .95, 1.00, 1.05, 1.10, 1.20

To be included in 2.

INSTRUMENTATION

a.B. Instrumentation in parentheses relatively unimportant.

Section 1: Armament Only

4 component missile balance 2 mein balance components

238 Rins.

Section 2(a) Canopy Hinge Moment in Yaw Only

- intermediate positions - +

4 hinge moment balance 2 canony tressure

(6 component main balance)

6 + (6)

68 Runa.

Section 2(b) Riffect of Canopy on Directional Stability

- no intermediate positions

4 hinge mement balances

2 canopy tressures

3 component tail belence

1 rudder hinge moment

5 component main balance

16

48 Runs.

Runs Included in Section 1

Section 2(e) Canopy Hinge Moment in Pitch

i thru v - intermediate positions vi thru ix - no intermediate positions

2 main balance components

A component missile balance

4 canopy hinge momenta

2 canopy pressures

12

28 Runs.

Section 4 Aileron Effectiveness

6 component main balance

4 component missile belance

1 alleron binge moment

77

B Buns.

Section 5 Hudder Effectiveness with Canopy

- no intermediate positions

2 main belance components
4 component missile belines
3 component tail belance
1 rudder hinge moment

rudder hinge morent

Section 6(b) Fin Pitot-Static Pressures in Pitch

2 main balance components
4 component missile balance
2 pressures (1 only for 6(b)1)
8

16 Runs.

40 Runs.

Runs Included in Section 2(a)

Section 7 Tufts

4 hinge moment balance 2 canopy pressures 6 (plus camera)

12 Runs.

Runs Included in Section 3

Section 6(a) Fin Pitct-Static Pressures in Yaw

6 component rain balance 2 pressures

24 Runs.

RUN	BALANCE		MISSILE	MIS. ATTITUDE			TOTAL ATTITUDE				
D.O.R	α		Sym.	TYPE.	α		Sym.	α'		Sy	mbol
1	1.0	0	Bu	Eccentric	1.0	0	SBU	2.0	0	BU	SBU
2	0	1.0	B _R	Fccentric	0	1.0	SBR	0	2.0	BR	SBR
3	-1.0	0	.B _D	Eccentric	-1.0	0	S _{BD}	-2.0	0	BD	S _{BD}
4	0	-1.0	BL	Fccentric	0	-1.0	S _{BL}	0	-2.0	BL	SEL
5	1.0	0	В	Eccentric	1.0	0	S _{BD}	0	0	B	SBD
6	-1.0	0	B _D	Eccentric	1.0	Ö	s _{EU}	0	0	ВД	SBU
7	1.0	0	В	Concentric	0	0	S _{WD}	1.0	0	BU	SWD
8	1.0	0	Ву	Concentric	0	0	S _{WU}	1.0	0	BU	S _{WU}
9	0	1.0	B _R	Concentric	0.	0	SWR	0	1.0	B_{R}	SwR
10	-1.0	0	B _D	Concentric	0	o	S _{WU}	-1.0	0	B _D	Swu
11	0	-1.0	B _L	Concentric	0	0	Swil	0	-1.0	BL	SWL

1 X

7 × 8

4 × 11 × 5 × 6 × 9 × 2

10 X

CF-105

SPARROW JETTISONING TESTS.

February 1957

FACILITY

N.A.F. Low Speed Tunnel - Ottawa

PURPOSE

To evaluate jettisoning of Sparrow Missiles from C-105 aircraft under different flight conditions.

To establish sequence of jettisoning such that no interference is present (missile to airframe or missile to missile).

To prove release mechanism.

MODFL

.07 Scale C-105 Model

+ 100 Models of Sparrow missiles

32 weighing .148 lb. 32 weighing .278 lb. 36 weighing .606 lb.

INSTRUMENTATION

Angle of attack and yaw indicator. Recording photographic cameras.