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SUiv'.iMAR.Y .AND CONCLUSIONS 

T~e usual technique of longitudinal stability analysis 

is adoptec. but particular attention is paia_ to those elements 

that contribute to damping~ The cases of two delta plan form 

aircraft of 45° end 60° s-vreep angle are considered and., L.7. the 

light of the best available data, their derivatives ana_ the 

coefficients of the stability quartics are obtained for a range 

of Mach numbers including the transonic· range. An analysis is 

made of the damping of the short period oscillation in each case 

and this is compared with a requirement to damp to half-~'"Tlplitude 

in less thc'l.11 one cycle. The results are dependent on estit11ates 

and assun-iptions that cannot be regarded as completely reliable 

i:n the absence of experimental data, and quasi-static derivatives 

are used in cases v~1.ere frequency effects should properly be 

Lncluded; but the broad im.plications of -the results are probably 

acceptable. They suggest thet the damping of the tailless 45° 

delta is inadequate at trai."'1.sonic speeds, -rirhilst that of the 

tailless 60° delta may be adequate for values of the relative 

density paraineter, µ1 = u/fp~g, less than about 200. Various 

methods of ir.T_prov:ing the daJn.ping are dis cussed briefly, and some 

sir.nple exarnples of response are included. 

~ Part of thesis subndtted at the College of Aeronautics, June,1953. 
'\ 
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1 • Introduction 

The delta planform is regarded as particularly well 

suited to flight at transonic speeds since the advantages of high 

sweep, low aspect ratio, and thin section can all be exploited to 

minimise the effects of compressibility on the aerodynamic 

coefficients and derivatives. Structural advantages are also 

claimed. 

The longitudinal damping characteristics of· the tailless 

delta at transonic and supersonic speeds are however ?uspe~t and 

require investigation. . In this paper the usuaJ.: approach to long­

itudinal stability analysis is adopted but particular attention 

is paid to those elements that contribute to the damping. The 

cases of two delta plan form aircraf't of 45° and 60° sweep angle 

are considerea_ ana_, in the lig...½t of the best available data, 

their derivatives and the coefficients of the stability quartics 

are obtained for a range of Mach numbers includ:ing the trmisonic 

range. .lm analysis is made of the damping of the short period 

mode in each case, and this is compared with a requirement to 

damp to half amplitude in less than one cycle, Some simple 

response calculations given in the appendix illustrate the more 

important conclusions. The analysis is appx·ox:iJnate and, in 

particular, quasi-steady values of the derivatives are used al­

though· it is clear for the cases considered that the frequency 

may be an :L"nportant parameter in the transonic range of Mach 

numbers. Nevertheless the broad implications·of the conclusions 

are probably valid m~d it is believed that the detailed. results 

of the analysis will have considerable intrinsic interest. 

2. Notation 

x,z 

x,z 
M 

u,w 

q. 

Axes and velocity components 

rectangu:I.ar Cartesian right handed co-ordinates with 
origin at the aircrart centre of gravity; x f orvvard 
along the axis of symmetry, z vertically dovmwaraE 

forces along the x,z axes, respectively (lb.) 

pitching moment (ft.lb.) 

increment of velocity in ili.rections x,z respectively 
(ft./sec.) 

angular velocity about pitching axis (rad./sec,.) 
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increment in angle of pitch 

angle between aircraft flight path and horizontal (rad.) 

undisturbed (steady) true airspeed (ft./sec.) 

wing angle of attack 

moment of inertia about pitching axis through centre 
of .gravity 

. ,. ga. 

~~ffi:~~=:::::::::=::!t:;;;~t:_~;;5::::==::=~H~o:r~izo=n~ta1Datum 
~ Flight Path 

z 
.,,..~ A:irora.ft Referenoe 

VIDID AXES 

2.2. Aircraft geometr.z 

wing area =be= ½be (1+A) (ft. 2) 
0 

taper ratio = ct/c
0 

tip chord (ft.) 

root chord (ft. ) 

wing span (ft.) 

standard mean chord (s.M.c.) = .1..c 
2 0 

2 ., /\ .... 
mean aeroczynamic chord (M.A.c.) = -

3 
c ( 1 +A - -;i 

t·· ~--! 0 .... 1 +A. 
4-l I\. l = "::- C i 1- --- l 
) ! ( 1 +I\.) 2 . _! 

distance of c.G. fro-111 apex (ft.) 

distance of leading edge of M.A.c. from apex 
_ - t· A _ 1 (1-A)(1+2A.) 
- y a.n. J \ - 3 CO · 1 +A. 

spamvise position of M.A.c. and s.M.c. from aircraft 
. b 1+2A. Co (1-7'.)(1+27'.) 

centre line = 6 ~ = 3 tan I\ ( i+/\.) 

sweep of leading edge 

posi tio;n of c.G. on M.A.c. in fraction of IvI.A.c. 
XO-X. • XO 1 +/\.-2A. 2 • 

= ............. =----- .2 
c c 2(1+7'.+7'.) 
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2b 
= c ( 1 +A) 

0 

l {-y-

1~, P,.,(;l 

J, l 

Fundamental notation 

·wing angle of attack (degrees or raclians) 

control deflection ( degrees or raclians), a downv-rard • 
deflection is positive (a positive control angle normally 
gives rise to a negative mon1ent) 

downwash angle (radians) 

acceleration due to gravity (ft/sec~) 

~:4ne· ( seconds) 

aircraft weight ,(lb.vrt.) 

aircraft mass,,::::. W/g· (lb.mass) 

Mach number= V/a 

speed of sound in_air (ft/sec.) 

density of air (slug/ft~) 

pitching moment/(½pV2Sc). 

Suffix t refers to a tail. Fur~her notation will 

be defined in the text. It may be noted that the revisions 

suggested by.Bryant and Gates20 to stability notation have been 

adopted here with the object of presenting an exaTJ1ple of their 

effect. Appendix I sumn1arises the resulting relation.between 

the derivatives as here defined and as defined in other sources. 
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311 The linearised equations of motion for dynamic longitudinal 

stability 

The basic assumptions made are: 

1 • The equations as developed apply to small perturbations from 
horizontal flight. 

2. Aeroelastic distortion effects are considered negligible. 

3. Cross-coupling deriva"'Gives between the lateral and longitudinal 
modes are·neglected. 

4. Wind axes are used •. 

5. Hince power-operated controls are most likely with the type 
of aircraft considered only stick-fixed stability is 
considered. 

6. The variations of density and speed of sound -with height are 
neglected. As shovvn in Ref. 18 these variations at 
high Mach numbers can have important effects on the 
phugoid motion but the effects on the short period 
motion are negligible.. Since we 2xe here primarily 
concerned with the latter it is felt that the neglect 
of these variations is justified. 

The dimensional egµations of motion in the usual 

notation as developed under the above assumptions are:112 

m11 + mg6 - X u - X w - X q - X_...,~v u y~-. q- w 

m(w-V~) - Z u - Z w - Z q - Z,¼ u w q w 

B6- M u - M w - M o - ivi_,_v~ u w q_;i. vv 

•••••••••••• (1) 

In non-ai~ensional form these equations bec01ne 

... (2) 

where the aerotfy1~anlic effects of deflected control angle to tr:un 

may be included in the appropriate derivatives and coefficients. 

Here, it should be noted that the unit of t:i.n1e ~ is 

defined by 
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:-\ 

so that t = t/~ = t½p~V/m, 

and the relative density is 

where c. is the aerodynamic mean chord. 

.Also 

/ 1 etc., X = Xu 2pSVt u 

x* r/:1 = = X
1 2pSc, etc.,, 

X = X /fpsrc,etc., q q 

m = M /½psrc,etc., u u 

m. 
w 

-r. ✓i Sc=2 = lV\• 2P 

m = l!I /½pifc2, q er 
, ;1 2 

etc., X = XO 2PV s, 0 

m = µ11.1
0
/½½P v2sc , 

0 

the notation is othervtlse standard. 

4. The Stability Quartic 

For the complementar_y function, we set x = z = m = o, 
0 0 0 

and following traditional lines we assume solutions of the form1 

where k1, k2, k
3 

and A a.J.."'e constants, which may be c?111plex, 

and where one of the k 1 s may be taken to · be unity. 

Substitution of these expressions into equations (2) 
At and division by e results in three equations for these four 

constants. 



The compatibility condition is then 

I x~ ..., X 
f A - w \ cLe - -9. I\. 0 X - (x +-A l = u w µi I µ I \ .. / J 

- f_ .. ~~ ~ + ( •• zfv -9 ;1_ { :S + 1) 
I 
j 

- z I\. l •• (4) u i ..... w \ µ1 . J \ µ1 / I 
µ1 -(~1 m 

m. \ 
1\.2 

m 
I -~u· 

+ _w A! -~A 
.... 1B w iB / 1B i 

Expansion of' this determinant gives a quartic in A 

of the form: 

............. (5) 

where 

The roots of the longitudinal stability quartic are, in 

general, two coraplex pairs, one pair corresponding to a short 

period oscillation and the other pair to an oscillation of consid­

erably longer period vrhich are subsequently referred to as the 

'short period' and 'long period' modes of motion of the aircraft. 

Thus the roots may be written A1 2 = r 1 2 + is1 2 , ' ' 
where the subscripts 1 and 2 refer to the short and long period 

motion respectively. 
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A first approxii.ua tion to the roots can be taken as·, 

_ _ _
2
1 (D _ BE) 

- \ C 2 / ' -~ C . 

These roots can be :improved until the following 

expressions are satisfied to the desired nuniber of decirfral places; 

2r-1 + 2r2 = - B 1 

2 2 2 2 (r1 + s1 ) (r2 + s 2) = E. 

The mode of oscillation correspo~ding to a particu,iar 

pair of roots is stable if the real part is negative 1 and unstable 

if the real part is positive, The necessary and sufficient 

conditions for stability are that all coefficients of the quartic 

and in addition Routh's discriminant 

must be of the sarne sign. 

The period and da.tupi:ng of the two oscillatory modes are 

given by; 

Period = 27t't/s
1 2 seconds per cycle. , 

Time to half amplitude = (1oge2-r) /r1 , 2 secona..s. 

Also of interest is the nurnber of cycles to da.t~p to half amplitude 

given PY 

Cycles to half ainplitude = Time to half amplitude 
period 

s ( 8) 
= -0.11032 ~. 

ri 2 
' 

When the -~vo pairs of roots are obtained, the deter­

mination of k
1

, k2., k
3 

corresponding tO' each root is made by 

substituting back in.to any pair of equations (3). The calculation 

of the complete response of an a:ircre.f't to any given disturbance 

r~quires a particular integral as well as the complementai"y 

function ~f the stability equations (2). Various well known 
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techniques are av~ble for this (see, for exe.rnple Ref. 2). 

5. Formulae for the Aerod;ynamic Derivatives 

that 

and 

It is readily shown (see for exan:tple, Refs. 2 and 20) 

X = u 

z 
w 

m 
ij{ 

z = q 

m = q 

x. = w 

o(qc/V) 

o(qc/V) 

ac 
m 

a( qc/V) 
acn 

a(ac/V) 
ac 

m 

a(ac/V) 

+ 20 
L1 

•••••.•.••.• (9) 

•••••••••••• (10) 

• •.•••• • •• • •• ( 11) 

•••••••••••• (12) 

for a tr:i.mm.ed aircraft 

............... (14) 

•••••••••••• (15) 

............. (16) 

............. (17) 

.............. (18) 

• ·• •••••••••• ( 19) 

............... (20) 

• No aooot.mt is here taken of any contribution of the propulsive unit 
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6. Determination of the Aerogynamic Coefficients and Stiffness 

Derivatives 

For these derivatives the control contributions have 

been neglected. 

Drag Coefficient 

The drag is assumed to consist of the sum of ~wo parts, 

the clrag at zero lift and that due to lift, and a further. sub­

division is as follows.-

f 
Form Drag 

i 

Visco~s Form 
Drag 

Total Drag 

Drag at Zero Lift 
f. 
t 

Friction Drag· 
(assurned independent 
of lift) 

7 
i 
i 

Zero Lift Wave Drag 
( inviscid flow) 

Drag due to Lift 

The formula for drag coefficient is then given by& . 

··········~·(21) 

where °i)(o) is the zero lift a.rag coefficient 

and K = ............. (22) 

For the examples chosen the wing is assum.ed to have a symmetrical 

section comparable to the N.A.C.A. 4 digit series vr.ith a mean 

weighted thickness-chord ratio of 6 per cent. That is, where 
iib/2 2 

2 
't 

t ( t/c) C <Jy 
1) 0 

= \ib/2 

..J 0 

C dy 

= .............. (23) 

It is further assumed that the ma:rimum thickness is forward at 

the root and back at the tip relative to a mean position of 0.3c 

and also that the wing is tapered down in thickness chord ratio 

from root to tip., 

The c1rag at zero lift has been estirnated from test 

results of ground-launched rocket boosted models314 with 
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6 
6 . 6 

Reynolds number in the range .10 to 20.10 • These values were 

faired into an assumed subsonic drag coefficient of 0.01. P.n 

assumed friction drag coefficient of 0.005 was subtracted from 

the measured zero lift drag coefficients at supersonic speed to 

give the inviscid flovv wave drag CD;v ( the viscous form drag was· 

assumed to be negligible at supersonic speeds), and the results 

fell closely about the curve shev-.;:n plotted in .~_&ire 1. For that 

figure µ = Mach angle = sin-1 ( 1/M1 ) = cot~1 
/ft~-1 and A is the 

sweep angle. Figure 2 shows the est:L11ated values of CD( o) against 

:M1 for the delta wings of 60° and 45° sweep angle considered. 

The drag due to lift has been estimated from exper:L-nental data 

for incompressible flow from Ref. 5 arid at supersonic speeds from 

the theory of Robinson in Ref. 6. These results are interpolated 

at tf ~so;.µ.q. speeds. by multiplying the incompressible flow v. alue 
I/ aa hncom:e 

by (aC-/aa) .• • The resulting values are shovm plotted in 
lJ .. comp. 

Figure 3. 

Lift coefficient 

The balance of forces normal to the flight path in un­

disturbed motion is 

or 

.••.•..••..• (24) 

The slope of the lift ci.lr'V"e·· has been estimated from the 

theory of Weissinger· in Ref. 7 and modified slightly by exper~nents 

as shown in Figure 4. Frequency effects are taken to be negligibly 

small ( see Ref. 8 Chapter 3 .3). Figure 5 shovrs the est:irnated 

variations of (acJaa) -v-rlth Mach number for the tvro delta plan 

fonns considered. 

from Ref. 19. 

Aerodynamic centre 

These curves are based on evidence obtained 

Evidence derived from Ref. 7 and some experimental data 

have been used. as a basis for the curves sho-vm in Fig. 6. 
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Slope of the.pitching moment curve at constant Mach number 

We have 

•••••••••••• (25) 

hence we can determine ( acn/aa\
11 

directly from the aerodynamic 

coefficients alre~dy discussed. 

Slope of the arag curve at constant ]Jfu.ch number 

Frqm equation ( 20):, 

Therefore ............. (26) 

and hence ( a°rJoa)iir. can also be derived from the relations 
J.vli 

given above• 

Rate of change of lift coefficient with Mach number at constant 

incidence 

If A = ( acr(aa)M
1 

then C L 
,._ ( acr(aa \[

1 
a= Aa 

and 

• \ 
CL ( acL\ oA oA 

•••••••..••• (27) -, = aM1 a = • aivI1 '-a]fi i' A •-l-1 • a 

Rate of change of d!.--ag coefficient ·with Mach nu1.1ber at constant 

incidence 

From 

1 ac \ 
! Di 
-I 

'~aM1; a 

equation ( 20) 

= 

= 

acD(o) 
oM1 

acD(o) 

a:r:11 

+ 

+ 

2KCL 

2KC 2 
L 

A 

l
' ac ·., 

Li 
-t 

01\,'.[ J .L._I" a 

2 oK 
+ CL ail/11 

..... (28) 
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Rate of change • of pitching moment coefficient with Mach nur.11ber 

at constant incidence 

C = CL (h-H
0

) m 

~· ac \ a(h-H ) /oCL) 
(aMm) CL 

0 + (h-H) = ( -i oM1 0 \ aM1 I 1 a . ..__ a 

oH CL oA 0 
+ (h-H) .............. (29) = - CL ol:11 A ai 0 

1 

The above relations are sufficient to.determine all the 

stiffness derivatives, that is, x 1 z, m, x, z and m • These 
UUUYvW W 

derivatives will be found plotted in the follevving diagrarus Fig. 7 

(x ). Fig. 8 (z ) 1 Fig. 9 (-m ), Fig. 10 (-x ), Fig. 11 (-z ), 
W"' W vV U U 

Fig. 12 (-m ) •. u 

7. Detemi11ation of the Damping Derivatives 

The force-angular velocity derivative x and the force­q 
acceleration derivative x. can both be saf'ely ne 0crlected since 

VY 

al)proximately 

X ,-•:~.-· (H -h) x.,~r q "•,.• 0 VY 
............... (30) 

and 

............. (31) 

The remaining damping terms have been estimated using 

the theory of Mul thopp-Garner, 9 Lehrian, 1 O' 11 • I\iangler, 12 ' 1 3 

Garrick, 14 Ribner and Malve. stuto.15,i 6 

Garrick,14 'ir.i. review:ing some research on fiutter, 

derived certain analytical results for unsteady incompressible 

flow past wings of very snall aspect ratio based on an extension 

of the classical theory of R.T. Jones. This analysis is also 

reviewed in Ref. 9. 

According to this theory 

i (x) .= 211:pVs ~ l~ + ( ds/a.x) (x-x)-t 
,. ... ,. .,., 

• 
where ~ = e+a, and ~ = e+a ~,;;q + v~/v , X is measured in the 
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x denotes the 
0 

direction of the free stream from a datuin point, 

position of the lateral axis about which the wing is oscillating, 

s = s(x) denot~s the semi-span of a transverse strip of the 

"\lving., and i(x) is the lift per 1-m.it length in the direction of' 

the free strearn. 

Then 

Substituting 

s = s(x) = .Ax/4 

l(x) = (1/8)pV~A2 (2x2 - xx
0

) 

';20 
C _ , l(x)dx 

L - .i fpv2s 
... 0 

= 

_2 
where S = Ac 

Therefore 
1 

- 2 

in the notation of Mangler and Garner, and becomes 

z~ = - (7CA/4)(3-2h) .............. (32) 

in the notation of this report. 

point 

S~-nilarly the pitching moment coefficient about the 

x=x 
0 

is 

n20 i(x) • (x-x )dx 

cm = ,L fpv2Sc o 

21tA ( ~) 11 -:a + H :a) 21 • 
i...__ C "~c / ___ } 

Therefore 2i 

IX \ ' 1 ,· _o}~ r = - 'JC.A +-' t 4 h - l \..c / ....J. 

or 
.......... 1) ••• (33) 

in the present notation,· so that m~ has a minimum magnitude 
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of zero· for the reference axis at the trailing edge, i.e. 

x = 2c or h = 1.0. 
0 

Garner, on the basis of the same theory, shows that 

for a taper ratio /\ = 1/7 

ac '2. 1 
x· 

1 L -2.) -2 = - 1eA( - -
a(yfc/v) 8 4 - l 

1,,. C 
....... 

• 2"""'l. ac 
?CA IJt _l X 1 ( XO)) i 1 m 0 

- 2 - - -+-
a(~/v) 8 - 4 ,. c . l C -U••r 

where x /c for the tapered delta wing is given by 
0 

XO 4 h(1 + /\ + (\.2) 2 (1-\)(1+2\) 

0 = 3 (i + \)2 + 3 (1+\)2 

= (4/3) (h+½) for /\ = 0 

Hence, for \ = 1/71 

••••••• ...... (34-) 

in the notat·ion of this report. It ·will be seen that the right 

hand side of equation (34) is very s::irailar to that of (32) 

indicating that the effect of taper is roughly the se1ne as that 

• of a shift· of pi tch:ing axis. 

Similarly for \ = 1/7 

2 
m~ = - 0.41CA(h-1) 

in the present notation. 

•••••••••••• (35) 

This theory (Fig. 13) shows poor agreement with the 

theory of J:!hll thopp-Garner or Lehrian even for an aspect ratio 

as lovv as 0.5 (see Figs. 14 and 15). 

Lehrian uses the modified vortex lattice method due to 

Vl.P. Jones. Her calculations show good agreement in incompress-

ible flow vvith the Multhopp-Garner method for the practical 

C.G. range of 0.4 < x /c < o.6. The J:1fu.lthopp-Garner method 
0 0 

extends 1,fulthopp 's subsonic lifting surface theory for steaay 

flow to harrnonic pitching oscillations of low frequency. The 
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local li:rt and pitching mornents at a nuraber of chordvvise sections 

are determinea. from a set of linear equations satisfying the 

downwash conditions at tvvo points of each section. By neglecting 

terms of second order in frequency (the theory holds for 

oo/ ( 1-1~) < ( 1 -, • and is therefore inval~d near M
1 

= 1 • 0) , the 

oscillatory problem is related to a corresponding steaa.y one with 

changed boundary conditions. . . 

The theory provia.e s what appears to be a reliable 

prediction of the effects of compressibility up to a Mach nu.i.'TI.ber 

of about 0.9 and indicates large increases in darn.ping in pitch 

vv:i.. thin this range for low aspect ratios. It leads to equations 

of the form, 

2 
3 z~ 

1 
acL 

= - 2 
a(~/v) 

ac 
=+½ 

m 

a(9fc/v) 
( i -1 2 , 

= ½ t cm2 + cm3 + (xi'c) I - cm1 + CI2 + CL3 i-(xo/c) CL~) 

1 
acL 

= - 2 
a(qc/v) 

= - ½ ' CI2 - ( x o/C) CL11 
L J 

ac 
=+½ 

m 

a(qc/v) 
= -½ f 0m2 + (xo/c)(cm1 + 0m2) - (x/C)

2 0L1{ 1 
~ ~ 

where C m is measured about the pitching axis at x
0

, and CL1 , 

CL2' CL3' Cm1 ' Cm2' Cm3 
of the delta plan.form. 

are coefficients depending on the geometry 

, J ;z~ 

f )m~ 

.g .z = - ½ f'rL2 - (x /c)IL1···: / {3 
3 ' q •..... o .JI 

J m4 = -½ [~m2 + (x0 /c)(I~1 + IL2) - (x0 /c)2 IL1 1//3 1 
-r 

,--~ $ $ 

where fJ = / 1-M-:-1 , and where IL.., IL2, IL·a IL' I .. 1 , I 2 , I 3,I 
11, ~ 1i1 m m m 

are coefficients depending on the equivalent vdng :in incompressible 
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flow (i.e. one with span reduced in the ratio fJ :. 1) • 

The theories of Mangler, 12 Ribner and Malvestuto15 are 

identicoland limited to frequencies where 00/(1~-1)<<1 for 

subsonic leading· edges and supersonic Mach nULibers. In the 

present notation they lead to the simple relations, 

where 

1CA 
zq = - liE 

1CA 
z-,r = - 4E 

(3H-2h - i) z{J 

f 
1 1 
j 

z = - 7CA/(4E) 
V{ 

H = EG 

E = cornplete elliptic integral of. second kind with 
p11:/2 2 2 j_ 

modulus k = · · ( 1 - k sin x) 2 dx .. Jo 

k2
= 1 - cot2µ cot2A 

2 l( 2 2 1 
G = k /; (2k -1)E + (1-k )F;1 

; ,.. . j 

F =· coxnplete elliptic integral of the first kind with 
;•,11:/2 2 2 _i 

modulus k = l ( 1-k sin x) 2 dx 
cl o 

H and 1/E as functions of µ cot/\ are shov-m in Fig.18. 

The results indicate that the 45° delta has negative 

damping for the specifiea_ practical c.G. range of 0.4 ( x /4 < o.6 
. 0 0 

at M1 = 1.2. 

Ribner in Ref. 16, uses the asSLu'llptions of slender w:i..ng 

theory. T'ne resul·ting stability derivatives ·within these assump­

tions apply at both subsonic and supersonic. speeds. 
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The theory leads to the follovving forD111lae 

z ::: - M/2 w 

z v'r = .:.,' ril./4 z~ = - ( w/4) (3-2h) 

z ::: - (71:A/2) ( 1-h) q ....... (37) 
m (::::: z (i--h) 

W' w 

11\~ = z., (5/8-h) m~ = - (1CA/2)(h-1) 2 
i,V 

m = - (?t.A./4)(2h2~3h + 11/8) q 

We may note that, not unexpectedly, the theories of 

:Mangler, Ribner and 1'.Ialvestuto reduce to the above s:un.ple 

relations when we set H = E = 1, i.e. when M1=1.o.,· and are 

identical with the results of the I.Dw .Aspect Ratio tbeory of 

Garrick. This theory, in effect, gives the slope of the m~1 

z~ curves for A_.,.,.:_. o., as shown in Figs. 14 to 17, but as can 

be gathered from those figures the the,ory has little reliability 

for any but very small values of aspect ratio. 

Mangler has in Ref. 13 developed a theory restricted 

to low freq_uencies and incidences but it is claimed to be valid 

at M = 1 .o. This theory inclicates the :i.inportant parameters 

in.fluencing the damping through the transonic range and demon-

strates the general trends. 

relations: 

This theory leads to the follow:i.ng 

a) 'Steady' derivatives (w--+o) 

z = - 75"1CA.2i w 

m 
V'l 

= z (~h) 
w,::; 

z = - bw.(1-h) q 

= - ('JCA/4)(2-h2-3h + 11/8) m q 

•••••••••••• (38) 

which are identical to the forrrru.lae given by I.ow Aspect Ratio 

theory of Garrick and Ribner. 

b) 1Frequen9y Dependent I derivatives (w ) 0) 

z¼ = - (1cA/4)k(oo) 

z~ - - (1w.V4)(3-2h) + k'(w) 
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mfr = zfv (5/8 - h) - (9/64)-x cot3.!\ ,. 

m0 = - ~tA(h-1 ) 
2 

+ (5/8-h)k' (w) - ( 9/64)1e cot3./\ 

............. (39) 

which include the additional factors dependent on frequency: 
2 r- 2 •••• ! 

k(w) = 1 - ½ cot /\ ,~.959 - 3 in(w cot l\ tl 
k'(ui) = ½itcot3 /\ ½.959 - 3Zn (00 cot2 /\ n •••• (4-0) 

These relations are identical with those given by the I.ow Aspect 

Ratio theory of Garrick and Fibner if we set k(w) = 1 and 
t (-) (- 2 • ) k w = 0 1 i.e. set 3 Zn w cot /\ =. 4.959 and neglect the 

tenn (9/64)1e· cot3 /\ which is small for low aspect ratios. 

With the aid of the results of the various theories 

which are illustrated in Figs. 14 to i 8 ana~ in the light of the 

available experimental evidence the curves of Figs. 19 to 24 were 

prepared for the two delta plan forrns considered. No great 

accuracy can be clafo1ed for these curves, particularly in the 

transonic range, which can only at the best be regarded as 

plausible guides to the truth. 

It should be noted however that the theories on vmich 

these curves are based assume that the frequency parameter w is 

small. In the examples chosen the frequency parar.aeter for the 

short period oscillation has in fact a max:ir.1um value of o.6· which 

cannot be regarded as small, and undoubtefily all the derivatives., 

both damping and stiffness, may be appreciably dependent on 

frequency for values of the frequency parameter of this order. In 

the absence of reliable experimental data, however, it was con­

sidered that there would be little to gain from an attempt to 

allow for these frequency effects in this analysis. 

We cen conclude from this brief revievr of the damping 

derivatives of the delta wing that 

a) the moment-acceleration derivative m* can be safely 

neglected at sub-critical speeds. 

b) vvithin the practical C.G. range, the values of the 

darnping derivatives i..Yl. incompressible flow are relatively 



c) 

d) 
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insensitive to changes of aspect ratio for aspect ratios 

less than 4. 

there is a positive contribution to dalnping from the 

derivatives z and m at all Mach nurnbers~ Thus q q 
the possibility of overall instability (i.e. z~ or 

mf6 . .> 0) at transonic speeds arises from the increases 

in zfr and mv'v • These derivatives can be decreased 

by a forvmrd shift of c .. G. but the shift requires .to be 

impracticab]y large to achieve a major ii.uprovement. 

The 'stiffness' of the short period oscillation depends 

largely on the variation of r.1yv, and this derivative 

increases vd th :Mach number to a r.1a.Ximur.1 in the transon±c 

speed range. This increase :i.Jnplies an increase in 

frequency, which i.~ turn L-nplies that instability at 

transonic speeds is more serious because the runplitude 

of the oscillatory acceleration will grow all the more 

rapidly and dangerously. Our concern is, therefore, 

wi.th the possibility of short period oscillations vtlth 

negative dronping. 

8. Forrnula tion of a Standard _of r!.D.nir.auin I.evel of Damping for a 

Delta Plan:form 

From equations (7) and ( 8), vre have, 

0.2206 J (m z _ -µ1mJ/iB 
cycles to li..alf amplitude ::::;:· q w • iJv • 

- - zw - m0 / ½ 
This relation •is increasingly more accurate at high µ

1
, i .• e. at 

high altitude where the damping will be most critical. 

If vre now specify that the minimum allowable number of 

cycles to half amplitude shall be one, the maxir.aum allo-v1Fable value 

of m~ is 

m~ ~; - z _ L - 0 • 2206 / L ( m z _ - µ
1 

m _ ) • .... ( 41 ) 

'P. w·J:S ~l J:S qw w max 

We may compare this value with the actual value of the 

damping derivative, the difference L).:m."· = m,.!k_ - m~ then gives 
}l' .iu111ax 'P 

a measure of the comparative damping qualities of the a.elta planfon11s 
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of varying sweep. 

The results of such an analysis are shown in Figs. 25 

and 26, where the effect ·of varying sweep, Mach number, c.G. 

position and relative density are illustrated. 

It vrill be seen that there are diminishing returns in 

damping for increased sweep.·· In fact, little advantage is to be 

gained for sweep angles greater than about 60°. Forward movement 

of the c.G. :iJ!lproves the damping but this is counterbalanced by 

'the increased stiffness of the oscillation f·or /\ > 60°. A 45° 
tailless delta appears to have inadequate dar!'lping in the transonic 

range of :Mach numbers. 

These conclusions are of course, subject to some 

measure of doubt insofar as the basic curves for the a.amping 

derivatives, Figs. 19 to 22, are little Bore than plausible 

guesses. Nevertheless .the trends of the results are aL~ost 

certainly significant. 

9. The Coefficients of the Stability Quartic and some deductions 

We are now in the position to estimate the coefficients 

of the stability quartic, from which vre can deduce the frequency 

and damping of the short and long period contributions to the 

oscillatory motion of the aircraft. The values of the coeffic-. 

ients m-e shown plotted i..11. Figs. 27 to 31 as functions of £/Iach 

number for relative density, µ1 = 50. 

Figs. 28 and 29 show that, except very near M1 = 1.0, 

a good approximation can be made to the short period darnping 

coefficient B and stiffness coefficient C by neglecting x, ,__ ' u 
z

1
,- /µ1' and z /µ1 • The quanti ty1/ n1v/µ 1 iB is shmvn in Fig. 32 

to be a good first approxilnation to the short period frequency 

parameter to= 21Cfc/V, where f is the frequency for the C.G. 

position considered. 

Figure 33· shows the cycles to d~""D:.~ t6 half ~"'!lplitude 

and demonstrates the need of a tailplane for the parameters 

considered in the case of the 45° delta to correct the serious 

instability in the range o.97(M1 (1.5. The figure also suggests 
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that µ1 should not exceed 200 for the tailless 60° delta to 

remain adequately damped •. 

It is vvell knovm that the coefficients· E and C in 

the stability quartic are related to the static and manoeuvre 

margins respectively. Thus, it can be readily sho~vn that 

E = 

where K is the static margin (stick fixed)= -n 
and vdth some approximation 

µ1 acL -
C-----H - ½ a a m 

'Where H is the manoeuvre margin (stick fixed). 
m 

...(42) 

K and H are sh0vm plotted in Figs. 34 and 35 and can be n m 
compared with E and. C in Figs. 31 and 29 respectively. 

1 O._ Possibilities of Improving the Dam;eing Derivative m~ 

Improvements to the damping de.rivative m~ can be made 

by the addition of a forebody, foreplane, or tailplane or by 

cropping the w:ing tips. 

Applying Munk's Slender Body Theory, an estimate of the 

ad.di tional damp:ing due, to fuselage is., 

where 

[:, m~ ~ - 2Bv (i-x? /(s'/52) , 

B = body base cross sectional area 
V 

2 
= 1Ca /4, 

i = body length measured forward from 1ving· apex, 

x = distance from c.G. to nose. 

Therefore 

•••••••••••• (43) 

For a represe:n.tative case, where S = 1000 ft. 2, c = 30 ft • ., 

i = 20 ft., x = 35 rt • ., d = 10 ft., we obtain t),m~ = - 0.05, 



a small, but significant value at transonic speeds. 

Cropping the tips, and thus reducing the aspect ratio, 

is not quite so effective as reduction of' aspect ratio by 

increasea. sweepbac..1{. The change in m~ due to cropping is 

closely equivalent to -tthat due to a shift of axis according to 

the geometrical relation 

X 
0 

h = - -
c 

2 
1 + i-,.. - 2i-,.. 

2 ( 1 +A-+A. 
2

) 
( See section 7) • 

For example, for a C.,G. at h = Oi.25 with a 'true I delta, the 

equivalent axis for a taper of 1/7 is h = 0.37 (i.e. x/c = 0.70). 
0 0 

From Figure 17 it is noted that for a 45° delta this 

will giVE? a substantial increase in -m~ , at M1 = 1.2, but this 

is not the case for the 60 ° . delta. • From Figure 15 a slight 

decrease in rn~ can be expected at subsonic speeds therefore the 

tip cropping -vv.i.11 not· produce sintllar gains in all cases, but it 

appears to be very effective with the 45° delta at transonic 

speeds as shovm in Fig.· :36. 

11 •. Some simple response calculations 

As an exam.ple of the ·response of the 45° tailless delta 

we 'Will consider the s:unple case of t1Yo deg;rees of freedoru, i.e. 

we will neglect disturbances in forward velocity, the elevon will 

be assun1ed applied instantaneously but the additional lift due to 

control deflection will be neglected. 

The equations of motion s:unplify toa 

the solution of which is& 

m 
0 

1 
=k 1 -

z 
Yv 

= 

m 
-9. + . 
73 

m 
0 

{ ~v'r _ 1\l r f 

\_73 /! 

•••••••• •••• (44) 
.... 
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where 
mw (z/µ1 +1) z m 

b w - ....9. I'....;_ B .,. .... (45) = -· + 
~ 

. . ......... 
(z~µ✓.-1) (z1/µ1 -1) 1B 

V I 

and 

k 
z w r,.,_c • __ ........ __ .., __ . 

The effect of :Mach nUL"'lber on this response is shown in 

Figure 37. The increase in damping and frequency -vvi th :Mach 

nur~1ber at subcri tical speeds vvill be apparent, as ·vdll be the 

dangerous instability ·at M1 = 1.0 coupled vr.i.th high frequency, 

and the poor damping and high frequency at supersonic speeds is 

also evident. 

A second example of response illustrating the effect 

of neglecting the dai-n-ning in lift derivatives z and z. is 
:I:"' g_ w 

shovm in Figure 38. 
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.lu"':>f'ENOIX 

Definition of Derivatives 

Factors to relate derivatives etc. as defined in this 
report to corresponding .American and British derivatives and 
coefficients as defined in sources listed below. 

Derivative or Garrick, Ribner, Lehrian Duncan Perkins, 
coefficient as Garner, Ha.lvestuto. Hage. 
defined in this Mangler. 
report 

,ac ·) 
X 2x - - 2x -20 -Tu(--4 u u u D a .1YL • a 

X 2x - - 2x c1 - C w w w Da 

x-vv - - - - -
it 

X - - ... 2-x -q c q 

2z 2z 

'

acL) 
zu - - -201-]1 'l,o M, u u ·a 

z 2z -CLa - CD -2l -C 2z -Cw - CD w w a D w 

z .• l t? ½ Ota .2. la - -w 2 ~f,, 2 

l z -½ CLq 
it 

z - 2-z -q 2 q 
C 

q 

2m 
it 

• ci\fu. m - - 2-m u u = u 
C 

l r.a CMa .2 it 
CMa m 2 ma 2-m w 2 w Yv 

C 2 

.2. ·1 .2... it 
µ.CM mw 8 m,\- 2 CMa 8 ma 2 - 2 m. = w 

C da 

2m 
l2 

·1 t 
µ.c}tr m 2 CMq - 2-m q 8 q =2 q 

C ··de 

't' 2'! 2rr; - 2'! 2'! 

t 2t 
I\ ;, II 

2t - 2t 2t 

¾µ 
l.,_ 

µ 2µ - 2 ~ µ 2µ = 1 
C 



c. 

Derivative or 
coefficient as 
defined in this 
report 

Standard Length 

i_s 

w 

°n 
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Garrick, Ribner, Lehrian 
Garner, Ifal ve s tu to ., 
Mangler. 

4--c 
3 

C 4- --c 
3 

fg~ 

Duncan Perkins, 

CD 

CL 

t CM 

Hage. 

C 
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