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SUMMARY AND CONCIUSIONS

The usuval technigue of longitudinel stebllity analysis
is adopted but particular attention is paid to those elements
that contribute to damping, The cases of two delta plan form
aircraft of 450 and 60° sweep angle are considered and, in the
light of the best available data, their derivatives and the
coefficients of the stability quertics are obtained for a range
of Mach numbers including the transonic range, An analysis is
nade of the damping of the short period oscillation in each case
and this is compared with a requirement to damp to half-amplitude
in less than oné cycle. The results are dependent on estimates
and assumptions that camnot be regar&ed as completely relisble
in the sbsence of experimental data, and'quasi-static derivatives
are used in cases where frequency effects should properly be
includedy but the broad implications of the results are probably
acceptable,s They suggest thet the damping of the tailless A5O
delta is inadequate at transonic speeds, whilst that of the
tailless 60° delta may be adequate for values of the relative
density parameter, By = W/%pgg, less than gbout 200, Various
methods of improving the damping are discussed briefly, and some

simple examples of response are included.

——

£ Part of thesis submitted at the College of Aeronautics, June,1953,
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Drag due to 1lift

Slope of lift curve for various angles of sweep
(incompressible flow)

Slope of the 1lift curve

Aerodynamic centre
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Force-linear velocity derivative Z.
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Force~linear velocity derivative X,

Force~linear velocity derivative z,

Moment-linear velocity derivative m,

Low aspect ratio theory ZIZ 3 mg (incompressible flow)
Incompressible damping in pitch, -Zﬁ

Incompressible damping in pitch derivative, -mé
Supersonic damping in pit¢h, -zg |

Supersonic damping in pitch derivative, -mé;

Functions H,E required in theory of Mangler, Ribner, and
Malvestuts

Force~angular velocity derivative Zq
Force-acceleration derivative Za
Damping in pitch derivative ZQ{
Moment~angular velocity derivative Zy
Moment= acce;l.eration derivative I,
Damping in pitch derivative ng

A measure of the ability of the delta planform to damp
the short period oscillation to helf amplitude in
one cycle

The coefficient A of the stability quartic

[
s

The coefficient of the stability quartic

The coefficient of "the stability quartic

U QO W

The coefficient of the stability quartic

The coefficient E of the stability quartic

The frequency parameter ws short p'eriod oscillation
Cycles to demp to half amplitude

Contribution of the wing to the static mergin
Contribution of the wing to the manoceuvre margin
Effect of taper on the damping in pitch derivative mé{
Effect of Mach nimber on response’

Effect of neglecting damping in 1ift derivatives,



1e Introduction

‘The delta planform is regérded as particuiarly well
suited to flight at transonic speeds since the advantages of high
sweep, low aspect ratio, and thin section can all be exploited to
minimise the effects of compressibility on the aerodynamic
coefficients and derivatives, Structural adventages are also

claimed,

The longitddinal damping characteristics of* the tailless
delta at transonic and supersonic speeds are however suspect and-
require investigation. In this paper the usual approach to long-
itudinal stebility snalysis is adopted but particuler attention
is paid to those elements that contribute to the damping, The
cases of two delta plan form aircraft of 145° and 60° sweep angle
are considered and, in the light of the best available data,
their derivatives and the coefficients of the stability quartics
are obtained for a range of Mach numbers including the transonic
range. An snalysis is made of the damping of the short perio&
mode in each case, and this is compared with a requirement to
damp to half amplitude in less then one cycle, Some simple
response calculations given in the appendix illustrate the more
important conclusions, The analysis is approximate and, in
particular, quasi-steady values of the derivetives are used al-
though it is clear for thé cases considered that the frequency
mey be an important parameter in the transonic range of Mach
mubers.  Nevertheless the broad.implicatiohs’of the conclusions
are probably wvalid and it 1s believed that the detailed results

of the analysis will have considerable intrinsic interest.

2. Notation

2e1s Axes and veloclity components

x;z reétangular Cartesian right handed co-ordinates with
origin at the aircraft centre of gravityy x forward
along the axis of symmetry, 2z vertically downwards

X,Z - forces along the x,z axes, respectively (1o, )

M pitching moment (ft.1b.)

UyW increment of velocity in directions x,2 respectively
(£t./sec,)

qa angular velocity sbout pitching axis (rad./secs)
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increment in angle of pitch ‘

angle between aircraft flight path and horizontal (rad.)
undisturbed (steady) true airspeed (ft./sec,)

wing angle of attack ‘

moment of inertia about pitching axis through centre
of gravity

Horizontal Datum
= - Blight Path
™y, Sdreraft Reference

242+ Adrcraft geometry

wing area = bc = %bco(’l-t-?\) (f’c.z)

taper ratio = c;_t/c o

tip chord (ft.)

" root chord (ft,)

wing span (f£t,)

standard mean chord (SJLC.) = do_ (141) = % .
1-2/(1+\)
meen acrodynamic chord (M.A.Ce) = 24 (1+7\ - -—2\*}
o o 3 %o L T+N

Jkzigl

3 L (1+7»)2._E
distance of C,.G. from apex (ft,)

distance of leading edge of M,A,C. from apex
(A=) (1+20)
o (EYN

spanwise position of M,ACe and S.M.C. frbm aircraft

centre line = % %‘:—2-% = E;-Q- %72%)

sweep of leading edge '

position of CeG, on } .A;C, in fraction of MeieCs
XX 14A=202 )

2(14nn2)

= Ertanf\z:%— c

X
= =2
c c

C
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A | ~aspect ratlo*w—#cotf”i 7\'2 =3 COtAC/4 [1_,_ %

2.3, Fundemental notation

wing angle of attack (degrees or radians)

7 control deflection (d.egrees or radians), a downward
deflection is positive (a positive control angle normally
gives rise to a negative moment)

e downwash angle (radians) ‘

8 acceleration due to gravity (£t/. sec%)

% A time (séconds) ‘

W aircraft weight . (Ib,wbs)

m aircraft mass.=. W/g (Ib.nass)

M, - Mach mumber = V/a

a speed of sound in_air (ft/secs)

p density of air (slug/fté )

c pitching moment/ (%pvzsé) , ,
Suffix t refers to a tail, Further notation will

be defined in the text., It may be noted that the revisions

suggested by Bryent and Ga‘l:eszo to stability notation have been

adopted here with the obaec‘t of presenting an example of their

effect. Appeﬁdix I summarises the resulting relation between

the derivatives as here defined and as defined in other SOUrCeS,




3« The linearised equations of motion for dynamic longitudinal
stability

The basic assumptions made ares

1. The equations as developed apply bo small perturbations from
horizontal flight.
2, heroelastic distortion effects are considered negligible,

3, Cross—coupling derivatives between the lateral and longitudinal
: modes are neglected,

Le Wind axes are used..

He Bince power-operated controls are most likely with the type
of aircraft considered only stick-fixed stability is
considered,

6, The variations of density and speed of sound with height are
neglected, As shown in Ref, 18 these variations at
high Mach numbers can have importsnt effects on the
pivgoid motion but the effects on the short period
motion are negligible, Since we are here primarily
concerned with the latter it is felt that the neglect
of these variations is Jjustified,

The dimensional equations of motion in the usual

notation as developed under the gbove assumptions arex1’2

nd + mgb - Xu-Xw - qu - Xw'é'v =X ?

n(%=V8) - Zu = L - qu - LW =2

0.:0:000.&.0(1)

g*

L

it
e

- Y SO i — f
BS- Mu - Mw=Mq- U = 1 }
q et

In non-dimensional form these egquations becane

5 .a Ly ; ps
(g%-nxu{}. -(ng}+-—.~4§ +€CL6.———C-'-.QQ-‘ =
3t /N at/ b oaks /
a_Doa FPB Vel _fE ) ae
- - { — A A -4 —_~ =
. = ) |
S mfeflg 4ok @Yy F3% Tgae) }
Yot Y 1g gty Laft ipoat/ °

where the aerodynamic effects of deflected control angle to trim

may be included in the appropriate derivatives and coefficients.

Here, it should be noted that the unit of time <1 is
defined by
T = m/%pSV s
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so that t = t/7 = tLpSV/m,
and the relative density is

m/%'? S ’

where c¢- ig the aerodynamic mean chord,

Also
x, = X /2pSV, etc.,
Xy = }V%psé, etc.,
X, = Xq/-;jpSVg setc.,
m,o= Mu/%pSVE setca,
or =2

me = My/2pSC

=2

= M _/%pSVe

mq | q/ 2P 20 ’
x, = XO/-;-pV S, etca,
m, = pMo/iB%pV?SE s

the notation is otherwise standard.

Le The Stability Quartic

‘For the complementary function, we set X, =2z, =mn =0,

and following traditional lines we assume solu‘bi{;ns of the forms

. ~ Ko "‘
. -~
o = k1e7\t, W o= kzewc, 6 = k:,.)em s
where k’i s k2, k3 and N are constants, which mey be camplex,

and where one of the k!s may be teken to be unity,

Substitution of these expressions into equations (2)
and division by ewG results in three equations for these four
constants.

(7\3{)1{ (x +H'H)k2 (ce--—‘i?\)k N

. )
i ] 'z -
z ( g ( g 0 ‘
-zk =iz _——- 1 k, - +i] N, =0
ul | w e Ty /T3 (
Y

1
lBu / \




where

..9}..

The compatibility condition is then

Y -x_+—7\\\ ce--Sy% | - 0

u {kw by L o i;

v ‘7 .y P N !

T j (___g S N
g - - 1)\ |
z, ? Zvv+(p1 ) it + J a oo (&) ‘

M B Me % n .

- = -(—.—1mw il - A |

B 1B B/ :]

Expansion of this determinant gives a quartic in A

of the forms

0.'.0.'.‘10'(5)

IV R SR W

PR ..
= ™
F Ga g mY [z m, X,
oo (e RO . g
oA/ ol VA S T A B
’ m,y /% “\ £ X m
C =z(x +-.3)+f——~1’; —.-g-mu-x.—g-
AU lB \\j rd 1]3 u'lBj
¢ Z k ‘m Hamm X, N
+f—9‘+1 {/-.jixu- 1w Wmua k
W (s % 3 Y (6)
fXe I me X \R
v oz | = S x -—.3’-“--9-}
u‘.a.l :LB W lB I..L_,‘
ix o ’zﬁr s mu‘)
D = Z_K—.-g-mu—xu-.—g-l)-b(—'—-- )(- CLHJ‘-,—--
T\'B B/ M B/
Z \ i m m / m X \
+{Eg'+1j ixu“1'iﬂ W}'W*P""Zué-iﬁcla-*?g‘ w o oiow }
1 \ B B \"B B B/,
.' Hq
E = Tl-:-B*CL (m 2, -z mu) .

The roots of the longitudinal stebility quartic are, in

general, two complex pairs, one pair corresponding to a short

period oscillation and the other pair to an oscillation of consid-

erebly longer period which are subsequently referred to as the

'short period' and 'long period' modes of motion of the aircraft,

Thus the roots may be written 7\1 ,2 =T, ,2 + 151’2

where the subscripts 1 and 2 refer to the short and long period

motion respectively.
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A flrs‘t epproximation to the roots can be taken asg

B e a—

| : —
- _/S_/3B
T4 ST2R P “»«.fA"sz\i P
: , s (7)
r o-afD_EY _ _/E_1{p_mY |
2 TTENCT 2/ 2 TvoTricT 2/ |

These roots can be improved until the following
expressions are satisfied to the desired number of decimal placess

E.

1l

2 2 2 2
(r,{ + s,]) (x5 + s2)

The mode of oscillation corresponding to a particular
pair of roots is stabie if the real part is negative, and unstable
if the real part is positive. The necessary and sufficient
conditions for sfaabili‘cy are that all coefficients of the quartic
end in addition Routh's discriminant

R = BCD - AD® - B%®

mst be of the same sign,

. The period and damping of the two oscillatory modes are
given bys

Period = 2nt/s 1.2 seconds per cycle.
3

Time to half amplitude = (loge2'r) /r,t » seconds,
H

Also of interest is the number of cycles to damp to half emplitude
given by

Time to half amplitude
period
51,2 (8)
~0,11032 '--4—- .
Ty s2

Cycles to half amplitude =

When the two pairs of roots are obtained, the deter-
mination of L kz, k3 corresponding to each root is made by
substituting back into any pair of equations (3)s The calculation
"~ of the complete response of an aircraft to any given disturbance
requires a particular integi:‘al as well as the complementary
function of the stebility equations (2). Various well known
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techniques are available for this (see, for example Ref, 2)e

5, FPFormulae for the Aerodynamic Derivatives

It is readily shown (see for exemple, Refs. 2 and 20)

that

< -

u

W

w

n

W

and
D,

i

It

I

H

3(ac/V)

acL

3(qe/V)
ac
m

3(a8/V)

aCp

. ) d(&e/v)

acL

i 3(&c/v)

oC
m

3(58/V)

.OCCO.Q.OO"(9)

Q'.Q'.O.'Ql'(1o)

01..0-..0'00(11)

n-c"at!ot00(12)

0.00.:00:».»(13>

-:-iuaonco..(14)

oatpoﬁ'ooaio(15)

DQQO.!’O.QQ.(16)

llll.tl.’.'t(‘]?)‘ :

000.00.0‘0-6(18)

eoessecsssae(19)

ooacqoo.oa..(ZO)

® No account is here taken of any contribution of the propulsive unit
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6. Determination of the Aerodynamic Coefficients and Stiffness

Derivatives

For these derivatives the control contributions have

been neglected,

Drag Coefficien’c

The drag is assumed to consist of the sum of two parts,
the drag at zero 1lift and that due to 1lift, and a further sub-

division is as follows,=-

TotaJ; Drag
! 1
Drag at Zero Iift Drag due to Lift
[ .
; T : . .
Form Drag Friction Drag
P (assumed independent
| of 1ift)
1
§ - N
Viscous Form Zero Iift Wave Drag
Drag (inviscid flow)

The formula for drag coefficient is then given bys

G. = C(o) + KC.° (21)

D - CD IJ (A X ENNEREE NN E R ]
where CD(o) is the zero 1lift drag coefficient

and K = aCD/aCLZ . oQ.-oqo-ob’a(22)

For the examples chosen the wing is assumed to have a symmetrical
section comparable to the N,A.CeAs 4 digit series with a mean

weighted thickness-chord ratio of 6 per cent. That is, where

/2

i

§ (t/0)% &y

T2 = ;‘l_g/2 = 0.0036. aiancn-not*t(zj}
% c dy '
w O

It is further assumed that the maximum thickness is forward at
the root and back at the tip relative to a mean position of O,3c
and also that the wing is tapered down in thickness chord ratio

fram root to tipe

The drag at zero 1ift has been estimated from test

results of ground-launched rocket boosted 1:-10(16].53 ok with
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Reynolds mumber in the range 6.106 to 20.106. These values were
faired into an assumed subsonic drag coefficient of 0,01, An
assumed friction drag coefficient of 0,005 was subtracted from

the measured zero lift drag coefficients at supersonic speed to
give the inviscid flow wave drag CDW (the viscous form drag was
assumed to be negligible at supersonic speeds) » and the results
fell closely gbout the curve shown plotted in Figure 1. For that
figure p = Mach engle = sin~dl(1/M1) = cot™] S,.*}?I\:If-’i and A is the
sweep angle, Figure 2 shows the estimated values of CD(O) against
M

1
The drag due to lift has been estimated from experimental data

for the delta wings of 60° and L5° sweep engle considered.

for incompressible flow from Ref, 5 and at su"_personic' speeds from
the theory of Robinson in Ref, 6. These results are interpolated

at oni¢ speeds by multiplying the incompressible flow value
tfgﬁ?/gjasincm'np,

vy (/o) .

Pigure 3,

The resulting values are shown plotted in

Tift coefficient

. The balance of forces normal to the flight path in un=-
disturbed motion is

or o :
s L giq 2
CIEMJI = V\/(‘é"pa S) = constant. D.OOQQQO.‘..(2}+)

The slope of the 1if't curve has been estimated from the
theory of Weissinger in Ref, 7 and modified slightly by experiments
as shown in Figure 4, Frequency effects are taken to be negligibly
small (see Ref, 8 Chapter 3.,3)., Figure 5 shows the estimated |
variations of (acL/aa) with Mach muiber for the two delta plan
forms considered. These curves are based on evidence obtained

from Refs 19

Aerodynemic centre

Evidence derived fram Ref. 7 and some experimental data

have been used as a basis for the curves shown in Fig. 6.
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Slope of the pitching moment curve at constant Mach number

We have
"60) e
i = (h—H ) { —'I-J? + C i ouobtbu&cnc.(ZB)
{aam 51, aJL! D ,

hence we can determine (acm/ aa)N directly from the aerodynamic
coefficients already discussed.

Slope of the drag curve at constant Mach number

From equation (20),

CD(o) + KCp,

£3C.\
Therefore ( D} = {-—L cotssessssss(26)
% r & da
> 1\51 lfI,} ‘

and hence (dC./da can- also be derived from the relations
M

given a@bove,

Rate of change of 1ift coefficient with Mach number at constant

incidence

Ir A = (ac:L/aa)M1

then 'CL = (BCL/“)M,] a = Aa
3C.Y c
{ Ll dA L 24
and \all,l ! - 8M1a = A * 'éﬁ1 uu.........(27) ‘

Rate of change of drag coefficient with Mach number at constant

incidence

From equation (20)

e ..
() B9, o (2
\FL/ = o W, L M
a 1 1" a
¢ (o) oxC._?
D~y =L & , .2 X (28)
3L, e YOLoa e
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Rate of change of pitching moment coefficlent with Mach number

at constant incidence

c. = Cp (h—HO) | |
730 a(h=H ) 730y
m [@) : i

(_ = ¢ —=—— + (h-H) { S

7 Vi i 7

aulﬂz’ a L 61.11 o] \al‘,i,l.a

oH
L oA
= . CL "éﬁ‘f“ + (h"HO) 'A"‘ ""aM1 ) 0;1@.0“..00(29)

The ebove relations are sufficient to determine all the
stiffness derivatives, that is, Xys Bgs B Xop 7
derivatives will be found plotted in the following diagrams Fig. 7

(XW), Fige 8 (Z‘W), Figs 9 (—mW), Fig. 10 (-xu), Fige 11 (-zu),
Figa 12 (-m )e

and m_, These
W

Te Determination of the Damping Derivatives

The force-angular velocity derivative xq and the force=

acceleration derivative Xs can both be safely neglected since

approximately

Xq el (Ho—h) XW cu-»o..;soo'(3o)
and aCD

X’D’Y ,2::-5—-5 (Ho-h) .0’40».0'9..(31)

The remaining damping terms have been estimated using
the theory of Ehlthopp—@a:mer,9 Ielq.r-ian,m?“ E‘fiangler,w’w
Garrick ,“" Ribner and Malve. s’t:u’cc..‘15 516

Cra:sc‘riclfr.,”F in reviewing some research on flutter,
derived certein analytical results for unsteady incompressible
flow past wings of very small aspect ratio based on an extension
of the classical theory of ReTe Jones, This analysis is also

reviewed in Ref, S,
According to this theory
e . =Y
1(x) = 2mpVs & (s + (ds/d:x)(x—xo)é

®
where @ = 6+a, and @ = 6+&wg + %/V , x is measured in the
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direction of the free stream from a datum point, X, denotes the
position of the lateral axis about which the wing is oscillating,
s = s(x) denotes the semi-span of a transverse strip of the

wing, and 1(x) is the 1ift per unit length in the direction of

the free stream.

Substituting
s(x) = Ax/L
(’J’C/S)pV{D,A? (23{2 - xxo)

S

1(x)

i

H]

Then g:25 . S
CL = i ZXd‘X where S = Ac
O —é-pvzs
, X
{ ot fg 1 “ol
= 2rA{ T ; L3 - % =/
. 5
Therefore )
PR AL B Ny
Ca(@vse) ok g

in the notation of Mengler and Garner, and becomes

Zﬁ = v (ﬂA/l[-)(f-Zh) uQCtOQQQOO!D(jZ)

in the notation of this report,

Similarly the pitching moment coefficient about the

point X=X is

: E
mo %pv%a

;‘;O
Zéj i X,y { X\ | 2"*'!
_ o  1/.0 i
= 2’JEA V,«; 51 - + 2{_ 5\_ !j Pe
- c -G S
i ~
Therefore 3 5 % /x \&2§
1 ju) 0 1 ¢ "o i
Fo = =emh (1. g |2
or

m - ‘;ﬂtﬁ(h"’})z :oo.oovoo'o»(Bj)

¢

in the present notation,” so that mﬁ has a minimum magnitude
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of zero for the reference axis at the trailing edge, l.c.

x = 2¢ or h = 1.0,
[o]

Garner, on the basis of the same theory, shows that
for a taper ratio N = 1/7 '

oC e X \"
cb—— =-m(d-p 2
3 (/) CR
ac . b4 F X 2
1 m A ..li:?. L © 1 '(._.O_\t f
~ETTT == ) 6L[- - g = + I { - !
a(%a/v) e [¢] R. C 4
where X /5 for the tapered delta wing is given by
o _ L M1+m+)\) L2 (=012
s 7 (1 +2)2 3 (140)?
= (4/3)(h+%) for A =0
= 141900 + 04560 for N = 1/7,
Hence, for N = 1/7,
= = A (0.728 - 0.1—146}1) ooﬁo-ooouo-o(jll-)

Y

in the notation of this reports It will be seen that the right
hand side of equation (34) is very similer to that of (32)
indicating that the effect of taper is roughly the seme as that
of a shift of pltchlnc axis,

Similarly for A = 1/7

mé = =~ Q.4 '}T.A(h—'l)z .o | . notooonnnn'c(BB)

in the present notation,

This theory (Fig. 13) shows poor agreement with the
theory of Multhopp-Gerner or Lehrian even for an aspect ratio
as low as 0,5 (see Pigs, 14 and 15).

Iehrian uses the modified vortex lattice method due to
Wa P, Jones. Her calculations show good agreement in incompress—
ible flow with the Multhopp~Garner method for the practical
CeGe range of Ok < ;co/co £ 0.6, The Multhopp-Garner method
extends Multhopp's subsonic lifting surface theory for steady
flow to harmonic pitching oscillations of low frequency. The
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local 1ift and pitching moments at a number of chordwise sections
are determined. from a set of linear equations satisfying the
dovmwash conditions at two points of each section. By neglectmg
terms of second order in frequency (the theory holds for
w/ (1-M'12 )<< 1, ‘end is therefore invalid near I, = 1,0), the
oscillatory problem is related to a corresponding steady one with

changed boundary conditions,

The theory provides what appears to be a reliable
prediction of the effects of compressibili‘&y up to a Mech number
of gbout 0.9 and indicates large increases in damping in pitch
within this range for low aspect ratios, It leads to equations

of the form, for M1 = 02

g'z' =—-l'-""af'£l——'z—lgc + C -(X/C_:)C?.

3 g e 5 (F5,/7) 2 L2 13 o L’ij

Sne =4t " s3fc oL+ /) -0 vo (x /5)%

9 N cm2 T3 YOV T T R I 7
ac

LS =+i—-?E{ﬂ-—-=—-§ +(X/5)(C + C )—(X/C_:)zc !

9 "¢q 2 N Canz n2 L’l} :

where Cm is measured sbout the pitching axis at X and CL’I s

OLZ’ CLS’ Om’l s sz, 03 are coefficients depending on the geometry

of the delta planform,

Similarly, for compressible flow,

2 | :‘
(e82) %, 4 (2821, IL;ffﬁ- (s /R)Ty, /o
;“ - ;f 1

-

'.‘ZQ; ==-%

2
3
%)m- =54

SR e

z (1= )I + (267101, + 113§ff/33

vo“\u‘-‘

! ¥, , 2 ]
b (2/8) [T 4 (2621) 1, + T JERE ORI

g
N - L
o= ek éMIL2 (XO/E)IL'I%{_;' J&]

! .
2 - f
m = 'j2‘ Em2 + (XO/E)(I?;] + ILZ) - (XO/E) I]:ﬂ_‘:fﬁ’ | .

where B = ,/1 Mf s and where IL1, Iips IL3’ Iis Im'l? Ios Im}’Im

are coefficients depending on the eguivalent wing in incompressible
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flow (i.e, one with span reduced in the ratio £ § 1).

The theories of lMangler ,12 Ribner and I\:i:»ﬂ.ves’cu‘c::)15 are

identiceland limited to frequencies where o/ (M? -1)€<<1 for
subsonic leading edges and supersonic Mach numbers, . In the

present notation they lead to the simple relations

2¢ %7 & (B -1) 2y cerereenans(36)
o o

R

z_ == m/(4E)

By = Z’vv(%-h)

m, = - %Eé (2h2-3hH + %5- H+ %) my

my = Iy (%-» h) me

where H = EG

E = complete ellipt}c integral (ﬁ‘ second. kind with
i/ 2
modulus k ;3 (1-ks:|.nx)26.x
. s

k"= 1 = co’czp cotZA

2/ (k) + (1o )Pq

P = complete elliptic integral of the first kind with
i’ﬂ/ 2 2 D e
modulus k = | (1-k"sinx)7? ax
do :

H and 1/E as functions of u cot/t  are shown in Fig.18.
The results indicate that the 45° delta has negative

damping for the specified practicel CoGs range of Ou <x /é 0.6
at I = 1 2.

Ribner in Ref, 16, uses the assumptions of slender wing
theorys The resulting stability derivatives within these assump-

tions apply at both subsonic and supersonic speeds.
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The theory leads to the following formulae

- ﬁx/z

zy == 7b/k | zy = = (ni/k)(3-2h)

2, == (na/2)(4=h) _

e s (dh) sveseen(37)
Me = Zy (5/8-h) 'mﬁ = - (m/z)(h—1)2

my == (m/4)(20%-30 + 11/8)

We may note that, not unexpectedly, the theories of
Mengler, Ribner and Malvestuto reduce to the above simple
relations when we set H=E =1, i.,e, when M,‘=‘l «0," and are
identicael with the results of the Low Aspect Ratio theory of
Garrick, This theory, in effect, gives the slope of the mﬁ,
gy curves for A -+ 0, as shown in Figs. 14 to 17, but as can
- be gathered from those figures the theory has little rellability

for any but very small values of aspect ratios

Mangler has in Ref, 13 developed a theory restricted
to low frequencies and incidences but it is claimed to be valid
at M = 1,0, This theory indicafes the importent parameters
influencing the demping through the transonic range and demén- |
- strates the general trends, This theory leads to the follovﬁmg

relationsg

a) 'Steady! derivetives (o-—30)

By =T A
m”w = 2 (%“h) ' :
W V?' a.otovcu‘wo-(BS)
z, == grA(1-h) '
my == (x/k)(2=62=3h + 11/8)

which are identical to the formuleae given by Low Aspect Ratio

theory of Gerrick and Ribner,

b) T'Frequency Dependent! derivatives (@ » 0)
- (=a/1 () |

- (n4/4)(3-2n) + k'(®)

i

b4
&

§

i




P -

Zy. (5/8 = h) = (5/6L4)x% cotoA
- Aea(n=1)2 & (5/8-h)k'(B) - (9/6k)% cot A

L2 3 X ] 0.’.“'.(39)

1t

Me,
g

i

which include the additional factors dependent on frequencys
k(o)

k'(@)

1 = & oot Eg_g.959 - 3n(d cot’h H
3 {m. - 2 ""g‘ 4 D.'.(l‘l’o)
%—ﬂcot i ;.&.959 ~ 3ln (w cot i )‘g

]

il

These relations are identical with those given by the Low Aspect
Retio theory of Garrick and Pibner if we set k(&) = 1 and
k' @) = 0, i.e. set 3 In(® cotzf\ ) = 4959 and neglect the
term  (9/64)x cot? /A which is small for low aspect ratios.

With the aid of the results of the various theories
which are illustrated in Figs, 14 to 18 and in the light of the
available experimental evidence the curves of Figs. 19 to 24 were
prepared for the two delta plan forms considered. No great
accuracy can be claimed for these curves, particularly in the
transonic range, which can only at the best be regarded as
plausible gu.ides to the truth,

It should be noted however that the theories on which
these curves are baseci assume that the frequency parsmeter ® is
small, In the examples. chosen the frequendy parameter for the
ghort period' oscillation has in fact a meximum value of 0.6 which
cammot be regarded as small, and undoubtedly all the derivatives,
both damping and stiffness, may be apprecisbly dependent on
frequency for values of the frequency parameter of this order, In
the absence of reliable experimental data, however, it was con-
sidered that there would be little to gain from an attempt to

allow for these frequency effects in this analysise

We can conclude from this brief review of the damping

derivatives of the delta wing that

a) - the moment~acceleration derivative m, can be safely

neglected at sub-critical speeds.

b) within the practical C.G. range, the values of the

demping derivatives in incompressible flow are relatively



-

insensitive to changes of agpect ratio for aspeét ratios

less than 4.

there is a positive contribution to demping from the
derivatives Zg end My at all Mach numbers, Thus
the possi‘bili‘ty of overall instebility (iece 2y or
mg-a/ > 0) at transonic speeds arises from the increases
in Zyp and m, « These derivatives can be decreased
by a forwerd shift of C,G. but the shift requires to be

impracticably large to achieve a major improvement,

‘The 'stiffness' of the short period oscillation depends

largely on the veriation of m_, and this derivative
increases with Mach number to a maximum in the transonic
speed range, This increase implies an increase in
frequency, which in turn implies that instability at
transonic speeds is more serious because the amplitude
of the oscillatory acceleration will grow all the more
rapidly and dangerously, Our concern is, therefore,
with the possibility of short period oscillations with

negative damping,

8. Formmulation of a Standard of Minimum Ievel of Damping for a

" Delta Planform -

From equations (7) and (8), we have,

0,2206 f(0 2 =p,m )/4
cycles to half amplitude &7 ‘/ qw A w’''B .

-z’vv-méf/iB

This relation is increasingly more accurate at high p 42 l.e, at

high altitude where the damping will be most critical.

If we now specify that the minimum allowable number of

cycles to half amplitude shall be one, the meximm allowsble value

of mﬁf is

mémax s =z dp - 0,2206 ,,./ :'B(quw - “’tmw) ,,,,,(151)

We may campare this value with the actual value of the

demping derivative, the difference FAY mﬁ = méfﬂax - més then gives

a measure of the comparative damping qualities of the delta planforms
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of verying sweep.

The results of such an analysis are shown in Figs. 25
and 26, where the effect of varying sweep, Mach number, CoGe
position and relative density are illustrated,

Tt will be seen that there are &iminishing returns in
demping for increased sweep, ~ In fact, little advantage is to be
gained for sweep angles greater than about 600. Forward movement
of the C,.G. improves the damping but this is counterbalanced by
the increased stiffness of the oscillation for /\ >60°, 4 145°
tailless delta appears to have inadequate damping in the transonic

range of Mach numbers.

These conclusions are of course, subject to some
measure of doubt insofar as the basic curves for the damping
derivatives, Figs. 19 to 22, are little move than pleusible
guesses, Nevertheless the trends of the results are almost

certainly significant.

9¢ The Coefficients of the Stebility Quartic and some deductions

We ére now in the position to estimate the coefficients
of the stebility quertic, from which we can deduce the frequency
and. démping of the short and long period contributions to the
cscillatory motion of the aircraft., The values of the coeffic-
ients are shown plotted in Figs. 27 to 31 as funéﬁions of lach

number for relative density, By = 50,

Figs, 28 and 29 show that, except very neax M, = 1.0,
a good approximation can be made to the short period damping
coeffioient B and stiffness-coeffic%gagnngg»by neglecting X,
Zy /ﬁ1, and zq/h1, The quantiﬁnfn%/pqu is shown in Fig.32
to be a good first approximation to the short period frequency
parameter to = ZWfS/V, where f dis the frequency for the CeGe

position considered,

’ Figure 33;shows‘the cycles to damp to half amplitude
and demonstrates the need of a tailplane for the paremeters
considered in the case of the 450 delta to correct the serious
instability in the range O.97€i@% {1e5e The figure also suggests
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that p, should not exceed 200 for the tailless 60° delta to

remain adequately damped,

It is well known that the coefficients” E and C in
the stability quartic are related to the static and memoeuvre

margins respectively., Thus, it cen be readily shown that

B o= -opolg? ﬁ(d‘&; Lol Ty (12)
i,°L 3| a0/ L,L T2 n
C Mzzconst. -
| .
where K = is the static margin (stick fixed) =~ (dac U/dCL) s

C‘LI 1=con:3t.
and with some epproximation

g, oC
C=-_i-;g'é—~clzjﬁm

where H_ is the manoceuvre margin (stick fixed),
Kn and Hm are shown plotted in Figs. 34 and 35 and can be
compared with E and C in Pigs, 31 and 29 respectively,

10, Possibilities of Tmproving the Damping Derivative mﬁ

Improvements‘ to the damping de’riva’cive 1:1?3 can be nade
by the addition of a forebody, foreplane, or tailplane or by
cropping the wing tips. '

Applying Munk's Slender Body Theory, an estimate of the
additional damping due to fuselage is,

=2
Doy 2 - 28, (1=x)7 /()

where Bv = body base cross sectional area = 7(0.2/4,

1

= body length measured forward from wing apex,
x = distance from C.G. tO nose,
Therefore , ; 5
o 2 =
&mﬁ Y - -%—’Kdz (l-—x) /(SC ) oou.cno.n'io(h—s)

For a representative case, where S = 1000 £t.2, 5 = 30 ft.,
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2 smell, but significent velue at transonic speeds.

Cropping the tips, and thus reducing the aspect ratio,

s not quite so effective as reduction of aspect ratio by

increased sweepback, The change in m% due to cropping is
closely equivalent to that due to a shift of axis according to

the geometrical relation

x 2
h = :9- -1-—1-"-—-7—‘--'15—2-}-—- (See section 7).
g 2(14n05) ‘

- For example, for a C4le at h = 0,25 with a 'true! delta, the

equivalent axis for a taper of 1/7 is h = 0437 (i.ce. xc/co= 0470)

From Figure 17 it is nobed that for a 45° delta this
will give & substantial increase in -m‘z at I L = 162, but this
is not the case for the 60° ‘delta, From Figure 15 a slight
decrease in mé, can be expec’ceci at subsonic speeds therefore the
tip cropping will not produce similar gains in all cases, but it
appears to be very effective with the 11.50 delta at transonic
speeds as shown iﬁ'Fig.' 364 '

11« Some simple response calculations

As an example of the response of the 45° tailless delta
we will consider the s:imple case of two degrees of freedom, i.e,
we will neglect disturbances in forwerd velocity, the elevon will
be assumed applied instentaneously but the additional 1ift due to
control deflection will be neglected.
The equations of motion simplify tos
h i’“ m 7 m %z \ |
, s
(\—--‘l) .@_E+£‘;‘.'.§;_.:.‘Y = 4 1\} -zW-f—.-g' {-:H- 1“;%
d‘b - BN B VB /|

= ._q. - |
I‘_é'mw ) - o2 f w o= mo Owcn'o‘oovoo(l‘l*')

the solution of which isg

. S
”ﬁ' i ‘f...... ’ s T kb ;:1 4 2 g
o= % 1 - K exp (—%b%)sin§g/k-(%b)2 + tan"'}l, v l‘—‘-_%F—l—
m f Qb 3 '
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=26

he A
waere my  (zg/k,+1) I m
b = == ‘ + - ’f:ﬁB ttonoo(2+5)
:LB (Z.,X/p'fl",l) (Z_‘,,iv/pul '1) :LB
and '

g v (zﬁ/p,ﬁ-ﬂ 1 (Z\ﬁ/“'l -1)

The effect of lach numﬁer on this response is vshown in
Figure 37« The increase in damping and frequency with Mach
number at suvbceritical speeds will be apparent, as will be the
dangerous instability at M’l = 140 coupled with high frequency,
and the poor demping end high frequency at supersonic speeds is

also evident,

A second example of response illustrating the effect

of neglecting the damping in 1ift derivatives zq and Za is
shown in Figure 38, ‘
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APPENDTX

. Definition of Derivatives

Fectors to relate derivatives etc, as defined in this
report to corresponding American and British derivatives and

coefficients as defined in sources listed below,

Derivative or Garrick, | Ribner, Iehrian Duncan Perkins,
coefficient as Garner, Malvestuto, Hage.
defined in this | Mangler,
report .
/ac ‘}
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2 i t
m n C - 2——=nmn C.
8 M = He
q q q c2 q Mde
27 2% - 27 27
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l
2 2t
B 5 B 24 - 2 - Blo2u




Derivative or Gerrick, | Ribner, lehrien Duncan | Perkins,
coefficient as Garner, | ialvestuto. Hage,
defined in this Mangler,
ireport
Standerd Length L3 s 3 2 .1 g
3 3 2 + t
;) 16 lB =2 = =2 - 2 B 2 h
mec c c -
k L
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PERIOD OSCILLATIQN TO HALF AMPLITUDE IN ONE CYCLE.

A MEASURE OF THE ABILITY OF THE DELTA PLANFORM TO DAMP THE SHORT
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