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WING STRUCTURES

Alex., Grzedzielski, P.Eng, Dr.Eng.
3enior Stress Engineer, Avro Alrcraft Ltd,

SUMMARY

A Method of stress and deflection analysis of low
aspect ratio wings !a presented, proceeding entirely with
redundsnt stress distributions. The effects of wing sweep,
taper, lateral contraction, and torsional warplng are cor-
rectly accounted for. The method presumes the use of a high
speed digital computer.
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I. INTRQDUCTION

The stress analysié of high aspect ratio subsonic
wings was a development of the beam theory, and although the
primitive bending stress distribution had to be corrected,
most of the times, by warping and shear lag distributions,
the whole analysis was basically one dimensional with the
span coordinate as independent variable., With the advent of
the low aspect ratio supersonic wing, the analysis has be-
come a chapter of the theory of plates and, therefore,a two
dimensional problem. In these wings, stress distribution
18 defined in terms of two local bending moments acting at
different anpgles and of a local torque, all three depending
on span and chord coordinates. Thus computations grew ex-
tremely involved and tedlious, and quite hopeless without an
electronic computing machine.

There are two possible ways of approach. One is
through determination of displacements, the other through
redundant distributions of plate bending and torque moments,
In the first method, displacements of selected wing points,
at spar and rib intersections for ‘instance, are assumed as
unknown quantities, Then, either the stress components are
expressed in terms of these unknowns and substituted in the
equilibrium conditions, or better, the strain energy of the
structure is found in terms of the unknowns and the virtual

work theorem is applied. 1In either case a large set of

linear simultaneous equations is obtained, connecting the

unknown displacements with the known acting loads. The pro-




cedure is known as the method of influence coefficients.

In the second method, at first an approximative
moment distribution is assumed so as to satisfy the equil-
ibrium conditions exactly, but leaving strains still incom~'
patible. Then, the assumed distribution is corrected by
several properly chosen self-equilibrated groups of internal
loads. Their magnitude is determined from the Castigliano
theorem, again by solving a large set of linear equations.
Subsequently, the stress distribution is determined and, if
desired, displacements are computed by the dummy load method,

In practice, the two methods are complementary
rather then alternative., The first one is best suited if
the object of computation is to esbablish displacements as
functions of the applied load, i.e. in aero~elasticity and
in flutter analysis. However, the method is not adequate

for detail stressing. It is common knowledge that quite a

crude assumption concerning the stress distribution yields

displacements which favorably compare with experiment.

Hence, a method designed so as to be acceptable for aero-
elastic purposes with the least number of unknowns, does not
provide sufficient information for stress analysis. But the
difficulty lies deeper. According to Ref.(3) Part 1, Chapter
IV, 4.1, even an exact solution of the plate theory, when
given in terms of displacements, may not, if at all, pro-

duce stresses with acceptable accuracy. If so, what accuracy
can one hope to obtain from a method using finite differences,

in terms depending on third or fourth differences? The




displacement method, does not yield stress distribution as a

byprpduct. On the other hand, a method satisfactory for

detail stressing may be too 1a§orious for aercelasticity.

This paper intends to contribute to the stressing
method of low aspect ratio wings, and proceeds entirely with
redundant stress distributions. The roots of the expounded

technique are in the paper of Yuan-Cheng Fung, Kef.(2), how-

ever many vital features have been added and the applications
are much wider. The method accounts correctly for taper and
sweep effects, for Poisson's ratio, for torsional warping,
and for the shear lag effect. It is designed so that the
bulk of arithmetic operations is performed by high  'speed
digital cémputing machines,

II. OUTLINE OF THE METHOD

1. Preliminary Remarks

The usual hypothesis in the analysis of thick skin,
milti-spar/rib structures is known as the lumping method.,
Accordingly, when considering wing bending, skin material is
thought to be accumulated along spar and rib flanges, and it
is left in its place when considering wing torsion, Cleariy,
the hypothesis is admissible, although it neglects the effects
of lateral contraction, (Polsson's ratio) and seemingly
yields good results for straight wings. However, the hypo-
thesis is unable to account for the effect of wing sweep, and
for any variation of the stress distribufion between the
lumped flanges otherwise than by estimation of the etfective

flange area.




It is shown in this paper that in order to accoint
for both sweep and lateral contraction, it is necessary to
retain some double products in the stress energy formula:
gspar direct stress times panel shear, spar direct stress
timesrib direct stress, etc. Since these terms are omitted
when proceeding by the lumping method, the inadequacy of the
method i1s demonstrated, However, the concept of the lumped
flange area 1s very handy and it is used on many occasiops
in this paper, especially in establishing relatjionship be-
tween the loads, external or redundant internal, and the skin
stress components, As far as concerns the stress energy of
the wing plate, a continuous stress distribution is assumed
30 that necessary integrations are always performed over the
entire panel, limited by adjacent spars and ribs. In this
manner the lumping procedure appears as a mathematical device

and not as a physical hypothesis,

In order not to overload the paper with detail the

analysis below is limited to the structures shown in tigures
1l and 2. The full lines represent shear weba: The spar webs
converge to one poinp and the rib webs are parallel. The
structure 1s svmmetric¢c with respect to the middle plane. The
upper and lower skin surfaces are planes and have a cémmon
trace passing through the intersection point of spar .webs,
The angle these planes make with the middle plane is very
small,

Since with a small number of webs the picture of

stress distribution obtained by the lumping method may be




quite crude, fictitious spars and ribs are introduced and
represented in the flcure by dotted lines. These elements
have flanges only, but no shear webs. Thelr number 1s
arbiltrary and 1s limited by economy reasons only. Lumping
of the material into spar flanges real or fictitious, is

done as indicated in Fig. 3.

Fig. 1

In thils manner the structure 1s referred to rect-
angular coordinates x,v and to trapezoidal ones u, ¥,

between which a transformation holds:

X =u, Y = u tany ‘ (1)

The directions of the shear webs determine a svstem
of reference for stress components. As a rule, 1n elasticity

systems of reference other than Carteslan are introduced in




order to make the situation at the boundary easler for
magheﬁatical work. Aa,‘iﬁ the pvéseht case, forces are fed
into'panels by shegr webs and the panels are of trapezoldal
shape, and since no ﬁqrmai stress of any considerable magni-
tude exists #t the leading,'or‘tréiling, edge, the trapezoidal

system of coordinates has been chosen.

Such a system i1s by no means esasy to apply and
requires some knowledge of the tensor calculus, at least for
guidance. In this paper, however, no direct refsrence to the
tensor technique is made and the trapezoidal stress components
are eliminated except for the panel shear. However it is
necessary to use them at the beginning.

In additlion to the main trapezoidal stress components

the following are used in the text:

a) orthogonal stress components Oys O

v Txy of the system x,y,

b) spar normal stress og;




¢) rib normal stress o .

Stress energy of the panel is expressed in terms of Oge Op»
and of T (average trapezoidal panel shear). Spar, or rib,
normal stress is computed by dividing the local bending

moment by the lumped area and the local wing plate thickness,

rib flange lumpe
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2, Trapezoidal Stress Components, Energy Formula

Stress components In the trapezoidal system u, ¥y

are denoted by 9,2 s T and defined ip,fig~4. In parti-

u

e i 4 Al

cular with reference to this filgure's™ f“'."
3,5 SR .

ot~

outuz(tanvz- tanYl) tuz(tanyz- tanYl) = const.

TuYtuz(tanyz— tanyl) tu, (tany,- tanYl) const.

t(u, - ul)/cosY2 const,

oyt$u2 - ul)/cos'r2

const,

eans a force in 1b,
ransmitted through
he cross section

in the directlon of

Tyut(ue - ul)/cosYz t(u, - ul)/cosYz

m
t
t

where t 1s the skin thickness,




The above sStress components satisfy conditions of

equilibrium on the Infinitesimal element du.dy:

Fig. 4

d(uo ) dt
L. o = F cosy = O
du oy

8(u21 ) d(a_secy)
__.__..._Y.l_.‘l_ < _—_Y.___.___ 0082Y = 0

udu dy

»

For derivation, see Appendix. By Fig. 5, the following

transformation holds between o ‘and o_, o_,

u* %y TuY x vy Txy'
Loy
- -

P
Y

,//‘
A <
> i 3
iy =TT
T o

Xy A




o _co8Y
u

T Ex
ay ousinY

; gsecY + 2T _tany + o _siny tan
oy OY cY uy i - Y tany

A mathematical expression for the strain energy of

8 sheet in terms of Oys Oy Txy stress components is known

B

- : - Z]dxd
o [ox + oy - 2moxoy + 2(1 + m)'cxy y

where m denotes Poisson's ratio. Introducing o, Ops Tuy

and replacing dx.dy by u.du.secgy,dy, obtain formula for the

strain energy of the panel in terms of trapezoidal coordinates

ZY - sinzv)o o, +

uy (4)

2 u du dy
TuY] e

2
+ =0
¥ (mcos

+ 4siny(g, + OY)TUY + (E/G coszY +gs§nzy)

cosdy

’."‘
LLETIRD

Here the particular terms have thp follﬁwing meaning. The TﬁY
term represents the shear energy of t?éfpgnel. The oi and

03 terms are interpreted as bending eﬁ?}gy of spars and ribs,
The term containing o, 0, introduces tgé;?5isson's ratio

coupiing. Finally the term 4siny '!:uY(ou

+ OY) takes care of
the swept wing coupling; if the term is omitted the computa-
tion will not show any stress cencentration at the trailing
edge in pure bending. In the following, the energy expression
is arranged for numerical computation,

a) Pure panel shear

The equilibrium conditions of trapezoidal stress

components admit as a solution

2
S Cc/u




where C is a constant of integration. When transformed

into the x, v coordinates the above yields the known

distribution

= 2cy/x°, = = G/x°

¥ xy

which evidently does not satisfy the compatibility condition

exactly. The solution is used below with this reservation.

<

Fig, 6
On any cross section ¥ = const., the shearing
stress gives the resultant
ug
TY = t TuY du secy
)
This force has in the x- direction a component, fig.6,

iy = T ¢
¥ osy

By integration




Hence the panel shear becomes

S 2 _ 2
TR ujus/u T hlhg/h

T

T T3 e
(u2 L ul)t

m

-

eand h 1s a linear function of u. T is the average
trapezoidal stress of the panel,

The strain energy corresponding to the state of
shear, Tpe c&N be evaluated by elementary integration,

2
At [1 + 4G/5E(tan2Y2+ tany, tany, + tanzvl)]
2G (8)

. 2 B -
where A = %(uz ul)(tanvz tanvl)

The shearing stress distribution of a panel limited by two
spars and two ribs, real or fictitious, is obviously more
complicated. However, 1t.w111 be shown later that by using
the lumping device it is possible to connect T with the
internal redundant loads. Thus, the above formula is a use-
ful approximetion of the shear energy of the panel,

b) Spar flange direct stress

According to the lumping method a state of pure
tension should be assumed in a spar flange. This state is

given by

. o,8ecy = 08(8), OY =0, TuY =0, (9)

oa(a) is the conventional direct stress of the flange. It

varies along the spar due to panel and web shears acting on




the lumped flange. However, it is assumed constant over a
certain range of ¥, the angular width of the spar flange.

Then the strain energy of the f{lange becomes

dvai= 1 ni(s) uq<3) ds

)

Aq i{s the spar flenge lumped area and s 1s the length

-

coordinate, and ds = du secy. On the assumption that panels

and webs de?elup shearing stress only, os(s) for each flange

segment depends on the values of the flange stress at both
ends of the sesment, i.e. on Og4 at two spar/rib intersec-
tions. Since As(s) is known the formula can be 1lntegrated.
See Appendix,

¢) DBib flange direct stress

A similar ressoning applied to rib Ilanges ylelds a

tensi
Q% (11)
rain enerev of the rib flange becomes

(12)

A is the rib flance

r

coordinate, and dr =

As before 1r(r) depends on the values the flange stress
attains st two spar/rib intersections at both ends of the rib

flanre segment.

d) Coupline terms

It is understood here that for larse angles of sweep

the rib arrancement Indicated in figure 2 would be adopted




in preference to the arrangement of figure 1. Therefore
is not a very large angle and the Sweep coupling term is
rather a correction. On introducing spar and rib direect
stresses, the integrands of the coupling terms become:
1) Poisson's ratio

(m cos®y - 8in®y) 0,0, = [0?]
11)  panel sweep

tany TuY(or+ cs) = [o7]

L3

Remembering dA = u du dy seczY and taking some weighted
averaces of the values Oy Og defined in the four corners
of the panel and introducing the average trapezoidal shear~
Ing stress Tm In the latter expression, the integrals

become

i) . V = -g_E [Oelav .(13)

2At .
V = _g— [oT]av « (14)

Thus strain energy of the strueture can be written
in terms of 04 and 0, known at each spar/rib intersection
and of Tm for each trapezoidal panel, The formulae are
exact in the limit A-O0, See Appendix,

3. Redundant Moments of the First Kind

Let Q be a unit losad acting perpendicularly to
the wing plate of figure 2., The statically determinate
part of stress distribution due to Q 1is obtained by sever-
ing the structure along the linees -iw.o.... I and iI, and
amounts to a simple spar bending., Were it expedient, some-

times, to introduce a torque as a, unit load, the statically




determinate stress would be the simple Batho shear flow
around the whole wing cross section or a part of it. Of
course, any stress distribution obtained in this manner does
not meet the condition of compatibility of strains and
should be corrected by redundant distributions satisfying
the theorem of least work.

Consider a wing plate as represented in figures 1
and 2, with the difference that the whole skin material 1is
lumped over the existing real webs i.e. all intermediate
spars and ribs huve been omitted. Suppose that the structure
is subdivided in separate cells by cuts made through the
internal webs, and assume for simplicity: =~
a) all webs are infinitely stiff in shear, however, they do
not oprose anv extension or compression of flanges;

b) no strain exists in webs in the direction perpendicular
to the middle plane of the wing; and further

¢) flange extension does not affect the shearing stress of

adlacent panels.

Sinde material lumping 1s a mathematical device only, the
latter statement expresses merely the principle of super-
position of stress components.

- Incompatibllity of deformation due to some assumed
statically possible stress system can be visualized thus:
Supposeall cells h:vd been manufactured to the dimensions
thev would acquire under the assumed stress if they were
isolated and free to deform. In general it would not be

possible to fit the structure together without gaps, and




any isolated cellspould always be fit;ed in three corners of
their common wall, but not in all four corners. In other
words cells would behave as a four legged table on an uneven
floor. This suggests the following concept of staticglly
Indeterminate groups of stress.

Assume, by hypothesis, that the redundant interaction
of any two adjacent cells is reduced to a group of four forces
applied perpendicularly to, and in four obrners, of the
common fsce or wall, See figure 7. Forces acting on adjacent

cells are opposite to those drawn in the figure. Forces of

"Fy/hzz

(N
\




one group are expressed in terms of a bimoment quanti@y MF
as shown in the figure. In particular, bimoments or warping
groups MFu act on or through faces u = gonst., bimoments
or warping groups MFY act on or through faces ¥y = const,
By hypothesis, each group produces stresses in elements of
two wing cells onlv. Thus all i1solated cells are considered
as statically determinate as it concerns their loading by
redundant groups. Incomplete cells, with a side web miassing
for instance, are statically impossible and structures of that
kind are not the objiect of this paper.

Assuming that all bending materlial has been redis-~
tributed so that every cell possesses some flange material
along its edges and assuming that panels develop shearing

stress only, it is possible by applyving the rules of Statics

to find in any desired place the value of a flange force, of

a panel shear, and of a web shear. It appears that the

panel shear, its average value =T

m* depends on four groups

acting on the cell. However, it 1s not immediately clear

how the flange direct stresses Igs Oy, should be evaluated,
By separating the strudture into individual cells
the flenges have been cut lengthwise and the amount of
bending material to be assigned to each cell could not be
specified. Since strains have to be gqual in both parts of
the same flange, after the structure 1s put together, an
additional redundancy must exist so as to provide for a

proper redistribution of the flange forces. Consequently

r 8re equal to the difference of two flange forces, as




computed from adjacent cells, divided by the total lumped
cross section of the flange, and the additional redundancy
does not have to be considered.

Denoting:

b1 = ul(tanvz - tanYl), bz = ug(tanye - tanYl), a = u,- ul;

a, = a sech, a2 = 8 sech one obtains, see Appendix,

1

MF by = My bp ¥ WPyohp = MF,y8; = &(byybp + hogbit.T,

{15)

MF o8y o8Y

h A c o 5 NF h A c (o4
uj 1283812 2 812 ug 22 822 2 822
(16)

"M T Ty Ry 90805 e ~MFy, = Bgidggy 908Y 080y

TMF o = By oA 10008700000 MR, = hpphinnC08Ya0n0,

- MF =h MF

y1 = B118r11°9871%11 y1 = Boy1Arp;C08Y;0n0;

No flange stress such as o, due to MFuz, or g, due to

MF__., etc. should be considered, the effects of two cells

Y2
under the influence of the same group cancel each other. The

shearing stress of spar or rib webs is found by summing up,

contributions of two adjacent cells on the web the cells

have in common,

Thus all three stress components o T can

r* %’ 'm

be established (with little trouble) in terms of the applied
loaé and of the redundantgroups MF, Then the stress compon-
ents are substituted in the energy formula and the second
theorem of Castigliano is applied. Hence all group values

MF are obtained by solving a set of linear equations. It is




discussed later how this somewhat enormous operation should be
performed. There can be no question, that, as long as the
number of unknowns is small, the procedure should not present
any difficulties from the mathematical point of view. What
is debatable 1s the accuracy of the solution obtained which,
probably, should not be large for a two or three spar structure,
The main question i1s whether the whole procedure makes any
sense at all with a laree numher of spars and ribs. The
answer to this important question is in the affirmative, and
we proceed to show that in the case of a rectangular grid of
webs, with the web spacing ap-roaching zero, the above group
functions MFu and MFY become the Southwell stress.functions
of the plate theory.
PROOF

Assume a rectangular grid of webs as indicated in Ikig. 8.

b

v \ vV
a b1 y
- .‘i___m.A_ﬁ_MM*M

c

v, U

/ Y rib
direction

4“
|

’

vai

x - stations,
stations.

S

spar direction thickness.

thickness,




Ribs may be spaced by 0Ox and spars by &y. The plate thick-
ness h may be constant all over the wing. Hence the four
forces belong to one redundant group are of the same magnitude.
Denote group forces acting in the x direction by U and group
forces acting in the y direction by V. Then in notations

of the figure (dy =u dy).
U = MFx/h, vV = MFy/h (18)

Both U and V vary from one face to another. Spar, rib,
and panel stress due to group forces is given as follows:
Bendine stress of the spar k at the rib b

v e ol VU U
% oy t dyt

Bending stress of the rib b at the spar k

Vbx = Vak oV
i S e S

(19b)
y 6x t dxt

Shearing stress of the panel a-b-1-k (by Batho formula)

\Y -V U - U
& e Nuen Y oy > B phu, 07 3,

Xy 26y t 26x t dx Jdy 2t

(19¢)

In the limit ©6x, 6y— O, finite differences become deriva-
tives as indicated, This result is compared with the theory
established in reference (2). By equation (8) and (36) of 1l.c,
it follows that U and V are the two stress functions of
Southwell's theory of plates. Hence, it 1is legitimate to
expect that, for a large number of spars and rios, computatiohs
suggested in this paper w11l behuve as a numerical solution of

the theory of plates.




4. PRedundant Moments of the Second Kind

If there are only few spars on the chord line, the
shear lag effect betwecn spars becomes appreciable, and the
accuracy of a stress distribution obtained by methods of
Para.? may be in doubt. The solution can be improved, how-
ever by introducing another redundant quantity MG. While
the MF groups were related to the Southwell stress func-
tions, the new quantity 1s akin to the Alry Function.

Consider, with reference to figure 8, a quadruple

cell extending from uy to u3 and from i) to Yg with

intermediate webs at u2 and Y2' By sévering the structure
through the middle plane and taking moments around the web
intersection line at Uy, Yo one can show easily that no
shearing stress is assigned to all external webs if the

relations hold:




¥rtie _ _ Wugbss = WPypeo,

hygo hog hzo

MFy1a190 - MFujboy » MFyoao0
h h h

12 21 32

But then, there is no shearing stress in the internal webs
either, as followsfrom the equilibrium condition of the common
edge of three webs 8135 893, b22.

The above four groups MF can be derived from a

single quantity MG such that

MFyy = MG hy, /by, MPug = = MG hpy/byo,

(20)

| MG hyo/8y0, Wyg = = MG hyo/a,,,

By definition the trimoment MG 1is the redundant quantity
of the second kind, and does not affect any web shearing
stress in the neighbourhood, Consequently it can be used
for correcting stress distribution between real webs., We
shall show now that the stress distribution due to a larsge
number of GM groups approaches in the limit a planar stress
distribution.
PROOF

Let figure 10 represent a flat sheet of constant
thickness for which a grid of bars connected by shear panels
is substituted. The bars are at right angles and, by the
lumping procedure, have their cross section equal to the
spacing a, times the sheet thickness t, and are supposed to

develop direct stress only. The connecting shear panels




carry shearing stress only,

Fig. 10

By cutting out an assembly consisting of three bars parallel
to the x-axis, of three bars parallel to the y-axis, and of
four panels, a self equilibrated system of stresses can be

defined. There are

‘1) four panel shears of the magnitude + G/a 1b/1in

2) at the centre the bars are in tension equal to 26 1b

3) at mid points of four sides the bars are
in compression - ¢ 1b




4) no bar Stress exists at the four corners of the assembly.
The above system of Stresses, when set at the inter-
section 1, k of bars, is defined as the Gik planar redundant
group. The stress system due to the trimoment MG 1is
equivalent in the 1limit U0, ¥-=~0, to two groups Gik'
one being formed on the upver skin surface, the other, of
opnosite sign, on the lower skin surface. If the bar spacing
a decreases, the stress distribution generated by an increas-
ing number of Gik groups converges toward a distribution
derived from an Alry stress function. Indeed, the bar stress

is respectively,

(=G, k1% 20y o =Gy x+1)/at
(=Gyoqop + 261k = By ) /at
the panel shearing stress is

Py h= Wy * 6yt e - 1,641 “C141 3 )/at  (21c)

In the 1limit the above expressions become

3% _ 9%

0O t/a = - 27 o t/a
i 7 : /4 Txyt/a (22)

dy? dxJdy

Thus Gik can be used as g Stress function with a method

pProceeding with finite differences, Hence, any system of
Gik satisfying the second theorem of Castigliano, for some
assumed statically determinate stress distribution, is an

approximate solution of a Planar stress pronlem,

The groups Gik are the onlyv ones which can be




used in plane stress problems. In plate probems, however,
the groups, or rather thelr assoclated trimoments MG = Gh,
are complementary to the MF warping groups ilntroduced in
para.3, One can expect that the relationships proved for
rectangular coordinates and constant plate thickness will
hold for trapezoldal coordinates and tapered plates as well.
Thus a wav appears open for numerical analysls of swept

and tapered wing plates with practically any arrangement of
webs.

5, Analyslis by Redundant Groups

If MG groups are used in order to improve an
analysi% which would not be satisfactory when done solely
by MF groups, care should be taken that not too many MG
groups are put 1In operatlion. For 1lnstance, no MG group

should be placed where four real webs intersect.

Consider a wing plate as shown in figure 11,

clamped at the root.




The full lines mav denote real webs and the dotted ones
fictitious webs, Suppose at first that all bending material
is lumped alongthe real webs. Thus a redundant group is set
on each web common to two tells, and two groups at the
boundary. This gives 12 groups of the type MF. The statically
determinate part of the stress distribution is simple beam
bending, An analysis of this kind has been made for a four
beam structure and results are shown: further below. As far
as concerns the case of figure 11 it is quite obvious that
the accuracy of a computation with 12 redundancies may not
besatisfactorv since only three points of the bending stress
curve are obtained at each cross section. Similarly, the
information on panel shearing stress is very poor and reduces
to two values at the root,

A better approximation is reached if MG groups
are Introduced in all points marked by x. and lumping is
changed accordingly, This increases the number of redundant
Broups by 36 and the total indeterminacy of the structure is
now 48. Seven points of the bending curve and a much finer
plcture of panel shears is obtained. No MG groups should

be placed at intersections of real ribs with the middle spar,

however. The reason is that any MG group at such a place

can be represented as a linear combination of four MF groups
set at, or acting through, the four adjacent webs and of
fourteen MG groups in the vicinity (six on webs and eight
within panels). The demonstration is Provided in the appendix.

If all dotted lines represent real webs, the total




redundancvy of the structure is increased. to 88. An addition-

al rsdundancy may appear at the clamped bou?dafy if some

vertical displacement of the foundation is bossible. Two

cases should be considered:

a) No displacement is possible at the root. In this event

all elements of the root rib are assumed infinitely rigid,

and the derivatives of the stress energy function are put

squal to zero as indicated by the Castigliano theorem.

b) The root is not rigid and some vertical displacement of

the foundation cam occur but no rotation of the spar ends.

In this case a third type of self equilibrated groups,

referred to as group ‘P> or MP, has to be introduced and

terms incorporating the foundation energy added to the

total energv of the system, The group P’ 1is composed of

three forces, acting perpendicularly to the plate as shown

in figure 11, Then a condition, g% = 0, expresses that

displacement of the point of application of one group force

relatively to the points of application of the other two

forces 12 the s'me for both the wing plute-and the foundafion.

In peneral the number of groups P at the foundation is

squal to the number of spars less two. It is understood

that forces comnosing a group P are in reality not concentrated

but represent a distributed action. Here again the principle

of lumping is vsed to advantage.in simplifying the computation.
The boundary condition of figure 2 i1s discussed in

the next gaction.




6, OBlique Boundary Condition

This condition is a topic in itself. In order
to generaliZe, let us assume that the structurs consists,
see Fig. 12, of é swept outboard part, and of a straight
inboard part. The first rib of the unswept part 1s referred
to,subsequently, as the rib at the oblique boundary, as the
common rib, or simply as the rib "R",

The main difficulty encountered with this problem
can be summed up.in the following manner: Since the system
of coordinates of a multi spar/rib structure is prescribed
by the direction of Spars and ribs, both stress and displace-
ment on either side of the oblique boundarv are related to
different coordinates, Hence the necéssity, when establish-
ing conditions of equilibrium at this boundary, to perform a
transformation of stress components., The lumping method
used in this paper’ assures, however, that the skin between
spars carries shearing stiess only. This assertion cannot be
transferred to the other System, for it is known that the
state of stress denoted a8 pure shear sxhibits normal stress
on any oblijue cross section. Thus the lumping method,
which merely results in inaccuracy, if the computation remains
in one svstem of coordinates, amounts to a contradiction
when a transformation is involved, It follows that the
distribution of stress components at the oblique boundary
cannot be transformed in the ordinary way and that the device
of lumpling must be incorporated somebow in the transformation

procedurs’.
. \




This method has already been used by other authors,
In the extension of the procedure it is assumed that the
triangular cells of the outboard part are protruding inboard
S0 as to form full quadrilateral boxes, to any one of which
four redwﬁdant groups can be applied. Thus two purposes
are served: First, a sufficient number of naramefers is
provided so that stress of anv spar or rib at the boundary
can be altered as, and 1if, required by the condition of
minimum strain energv. Hence in the example of Fig. 12 all
sixteen stress values, denoted/x/, ere uniquely determined
by one statically determined svstem and by 15 indeterminate

groups. R

outboard ' inboard




Secondlv, shearing stress need not be assumed to be zero
in a2l1l triancular cells adjacent to the boundarv, as it
would apnear if the lumping method were followed strictlv.
Then the structure 1s severed alongthe line R - R and the
action of the outboard part on the inboard part 1s considered,
a) Anv spar or rib flange force, generated in the outboard
nart and applied to the inboard one, 1s resolved in two

c omponents, narallel to the direction of the inboard flances,
and paralle) to the flance of "R". See Fie. 12, vectors
pout’ Fin’ WP. Since the moment produced by Fr is reacted
bv the shear flow of the inboard torque box, evidently a
discontinuity of the flange stress of "R" 1s vresent at this

spot. This discontinuity 1s fictitious and entirelv due to

the lumping procedure. A means for smoothing out the stress

picture is indicated in Fig. 12, The moment of F;, and the

corresnonding shear force are t:iken by the inboard spar,

b) The action of the outboard triangular onanels on the
inboard structure is represented by P, the geometric sum
of the piled up shear forces, as shown in Fig. 12. P 1is
replaced staticallv bv a normal force N and a shear force
S. If the nansl shear is d'e to a torque defined betwseen
two s»ars of the outboard part, then , bv Fig. 13, the N
forces ®roduce an inboard suar'bendinq moment M = T.sina,
and the S forces, toszether  with the shear forces of the
severed webs, produce an inboard toroue T.cosa. It is

shown in the Appendix that for a given torque T, the panel

shear T,, and the lumped spar bending moment are given by




the formulsae:

T = (h22b1 + hllb2) £ (23)

hyibp
hooby + hyjby hopby + hy by

hooby

T.sina

T.s81ina, Ml =
(24)

After these remarks, the statically determinate system can

be established without difficulty. Theoretically all stress

distributions balancing the applied load are equivalent in

this respect. In practical computation, however, it is

advantageous i1f the final distribution 1s not too different

from the initial one since, otherwise, the rounding errors

are becoming important.

c) The statically indeterminate actlon 1s considered now,

Fig. 14 explains the numbering system of the warping groups

applied to cells along the boundary "R". A section made

through the structure outboard and close to "R" leaves fres




three groups of stress:

First sgroup consists, Fig., 15, of the normal to
"R" components of the flange forces and of the lumped panel
action N, The group generates a warping bimoment MH
applied to the inboard part at the rib "R",

Second group is made of a part of the panel action

S together with the web shears Tw of the cut spars or ribs
outboard., This is a self equilibrated system which is
absorbed by the shear web of "R" at this place. Since all
webs are assumed stiff in shear this group does not penetrate
any‘further inboard.

Third group consists, Fig, 16, of the chordwise
components of the flange forces and of what is left of the
panet action S. This is also a self-equilibrated system

which does penetrate inboard, however.

In order to see what the last action amounts to,

consider the warping groups MFV to be set on the spars of

the inboard part. See Fig. 16. Sincece the chordwise stress
generated by these groups is a difference of two group

values (divided bv the rib flange area of course), the same
must be true of the flaége stress of "R". One should expect,
therefore, that a combination of the redundant quantities of
the outboard pvart affects the stress of this flange. Moreoves,
if no such action were present the stress systems of both

parts of the structure woypld not influence one another except

by the MH geroups. The necessary additional link is provided

bv the third stress group as it appears clearly from Fig. 16.




= . = v
Suppose that thgl MPng and that all other groups are
zero. In this case no stress exists in the rib flange acted
upon by two non zero groups, However, the two S forces

remaln and produce, in the case of the figure, a local exten-

sion of the "R" flanse denoted (+). Apparently, the effect is

similar to the action of a force of any group MFy shown in
the figure. 7The resulting strain depends on the full group
value, (not on a difference of two group values), and is
toned down subsequently by the neighbour group MFy.

In the general case all warping groups hﬁve different
values, Thus the above action is conceived as a function of
a whole set of warping groups ‘affecting this particular grid
point of "R". In the following the action is referred to as
the redundant rib moment MR. It is shown in the Appendix
that for cells having "i" as a diagonal the warping moment

¥H has the value:

ME ME'y
MH1 uzl cos(a+72) + Ll my, cos(a+yl)
cosy, cosyy
MPye1 sina + EEIll m, sina
cosy, cosyy

Then for grid points on "R"

sin{a + Yo)
© cosy,

( MF + )

uo1Ps Fugehy )

n, + MF.,,,n,) £0SC
Y212 22l cosy,,

+ (MF

In the above
hyiby
h11b° + hjgbl

5

m, = 1l - my

are the weicht factors.







See Figs. 12 and 16 for definition of lumped areas. Similar
formulee can be established for other célls and grid points
of "R", by conveniently raising the indices in conformity
with Bleg, 16,

(25) and (26) are the transformation equations of
redundant quantities., In order to grasp their true meaning,
suppose, for simplicitv, that the part outboard of "R" is of
constant plate thickness with ribs and spars at right angles.
The new svstem of reference is written u, v, instead of u, ¥,
with v as a length coordinate. Dividing by h the ecuations

become @

+ (F B JIREaass:

ve1t fvii

* Fugo! * (Fyo* Fupg) 5

“(Fugy* Fugo >

and, further with the grid getting smaller and smaller:

Fucosa + rvsina

~F sina + F_cosa
u v

One sees that the forces com-osing the warping groups of the
first kind transform as vectors when passing from one system
of reference to the other., This should be expected. By (19)

of Chapter II, 3, H, R, F F_ are the Southwell stress

u? v
functions of the plate theory and their law of transformation
should be compatible with the law of transformation of stress

components. It can be shown, after some work, by direct

substitution that the stress components will transform by




the known formulae, when passing from one system to the other,
only if the Southwell's stress functlons transform as indi-

cated above,

ITTI, NUMERICAL OPERATIONS

1. Matrix Notation

It is apparent from the preceding analvsis that the
numerical work, for any structure of practical significancs,

is quite extensive. A good diglital computer is required in

order to digest the quantity of data. However, the prepara-

tion of data for the computer is a difficult task, since all
material fed into the computer must be error free and sincg
the automatic process, when once started, has to be carried
out to the end. Therefors all preparation of data, their
checking, and presentation must be done as neatly and orderlv
as possible. The indispensabls mathematical tool which

makes the whole work feasible is the matrix calculus and
technique. At this place, a few particulars of the adopted
notation are explained as there are differences, and preier-
ences, among different authors,

In this paper matrices are denuted by 1etters,
mostly capital omes, with appended Indices as for instance
Sias Zgps Fp. Three groups of indices are introduced:

1) Load point indices

a, b, ¢ e Zh Ba a0 5o 5
to indicate position where a load is applied or where deflec-
tion is measured. A Symbol, such as Qg denotes a load applied

to the structure, and 2, denotes a deflection at the load




point a,
2) Stress section indices

1, ke 1 m 1, 0. 8. .0 . eniia
indicate cross sections or spots where stress is, or is
proposed to be, determined. Thus S; denotes all stress
values such as Ogs 9py Ty, at spar rib intersections, or at
panels, In particular gi denotes the statically determinate
part of the Stress distribution.
3) Redundant group indices

Py G, = 1, 2,3, .. . . . o
Thus Fp denotes any redundant quantity or group,

Indices are interchangeable within each group, e.1.
i can always be written for %k eand &k for 1, However,
one is not allowed to usé, say a p 1letter in order to denote
a load point. Qa’ 31’ and,Fp are vectors in the matrix
language, From the point of view of mechanical computation
the distinction between a column and a row vectbr is immater-
lal, since each one is represented bv a similar deck of punched
. cards or by a similar gequence of marks on a tape.

At any cross section 1 stress is a linesr function

o
of an applied load and of & redundant load., This relationship

is written in the adopted notation

Si 4 TiaQa iy Kipr (27)_

where Tia is the statically determinate stress-to-load
matrix and Kip is the stress-to~redundant?load matrix, A

convention is borrowed from the tensor calculus: g repeti~




tion of an ihdex means that a summation is carried out
through éll.indéx values. A repeated indéx can be designated
by any lettef of the same group provided the letter has not
been used in the same term already. Interchanging indices

of different groups, e.il.writing Tai'for Tia’ would conven-

x*
tionally mean that a matrix is being transposed.) However,

from the point of view of mechanical computation, again it
is immaterial how a matrix is written. What matgers is how
the matrix is marked on a tape or how the punch;cards are
shuffled. So for instance a matrix Api where 1 =1, 2, 3,

4, 5, p = 1, 2, 3, e.1, an array

X Xi g X,
can be marked on the tape or shuffled by the p index in
the sequence
P il 2
X R Tk Xl Rk x e X
1 .2 3 4.5 1 234-+5
index in the sequence
1 2 3 4
X X X X X X X X X X X X X X X
P = 1N0RE 10 2) L2 1L & G TRCNE
which of two arrangements is used depends on whether the
matrix is a post or a premultiplier. So for instance in a

multiplication represented symbolically by

%) Sea peh2.




A = C

ati Bip

or graphically by
S

| , | |
; . ! i % é /)
| ! |

the premultiplier is arranged by a row index a, and the

-postmultiplier by a column index p, It 1s entirely up to
Y

the operator how the product will emerge ffom the machine

and his fudgment will depend on how he intpnds to use the
result, as a post- or a premultiplier, 1n‘}urther work., The
rule is as follows: in any simple matrix multiplication such
as AaiBip the matrices have to be arranged by indices which
are not summation indices. For these reasons it is not impor-

tant for this work whether a distinction is made between an

original and a transposed position of a matrix. It is im-
portant, however, that any established formula presents a
clear program of operation to the computer.

Strain energy is computed at first for each particular
element such as a flange, a panel, in terms of stress components,
then a summation 1s carried out for the whole structure. In

the result
Vo= 304,848,

whers C1k is a symmetric square matrix of order 1. The
above notation is satisfactory for paper work, of course. It

does not indicate the sequence of operations, however. The




required notation 1is
-t : {
V = £5,04,5, (28)
and is used as a starting expression in the work below,

2. Stress to load matrix Sia

In the notation of the last section, the stress
at any significanthcréss section i1s a sum of the statically

determinate part gi = T4gQy and the redundant part: thus

On substitution in the energy expression, we obtain:

e

e
V = #(FpK,y + sli)c1

k(S + KygFq)
L e B !

Here, in the second term on the right hand a new index q has
to be Introduced according to the rules of operating with
summation indices,

When carrying out the indicated multiplications one
has to consider that the two products, as marked above, are

equal, Hence the energy formula becomes

38.0,.8 + *F K .G S
V o= $5,C,, 8 + FpK CipSi + %prpicikx F (30)

pi kq q

¥ith the notation

Ko1Cix Hoxo Kp1C1xBkq

the snergy formula is written

(o}
FH.S + 2F D
ppkk T BFpPpqfq




o}
V is the staticallv determinate portion of strain energy,

not required at the present time. qu is a symrmetric matrix.
By the second theorem of Castigliano

8

gk 'k 5

av/aFq = H

Here the index q denotes the equation and the index p

-1
the unknown in the equation. Let qu be & matrix inverse

Then the solution of the above set is given by

to qu.

F - p g 8
= -
P pPa qkk

s N (o3 -1 o
e e Kiprq qusk

on, introduciﬁq the Kronecker delta ﬁik’

s i 8
= pa Hak) Sy

1 K

O4e = Kgp D

Since gk = TkaQar the stress-to-load relationship bscomes
51 % S45Q (83

where Sia is the stress-to-load matrix given by the opera-

tional sequence
-1
: S = - ;
(04 Kip “oq qu

- S

Ka (33a)

Note that 6,, = 1, when i = k, otherwise &

1k ix = O

3. Displacement-to-load matrix Lot

Since the stresses are known in terms of the applied
loads, it is nossible to express strain energy in terms of

these loads. On substitution,




Vo= $Q.8.404,S4,Q

Expression

Zab = Sa1CiiSkp

is the displacement-to-load matrix and strain energy is

written in terms of the applied loads.

Vo= 4Qu2.,Q ' (34)

By the first theorem of Castigliano, the displacement at any

point a 1s given by
v/, = (35)

When working with an automatic digital computer,
determination of Zab is straightforwards; . Another expresaien
for Zab is derived now which has the advantage of being-‘a
1ittle more time saving and of permitting some numerical
check on operations performed.,

From the strain snergy written in the form

v = 38,c,8 + FpHpkgk + ¥FD P

subtract, in view of equation (27)
5 o
& p(Hkak + quFq) = 0
Thus

o
vo= #5,0,, 8 + dFoE, 8 (36)

Remembering Hpk = Kpicik the above 18 brought to the form




—qP=

(o} o
vo= (8 + FoKp1), Gy = #8404y 8y

Because of the symmetry of Cik

Vo= QT .00 S80%

Zgp =  Ta1CiySip (37)

is the alternatice form of the displacement-to~load matrix,
Apparently thls form saves the cost of rearranging Sia to
Sai and provides an important check, since the matrix Zab

must be symmetric,

to p.37

#) It follows that rows and columns of non symmetric square
matrices should not be designated by letters belonging to
the same group. This restriction 1s quite meaningless and

has not been observed in the text. See (33a) matrix

=

Xip Ppq Hak-




IV  NUMERICAL EXAMPLES.

The methods of analysls presented above wers
checked on several numerical examples and compared with the
test results. The considered problems subdivide into three
categories:

1. Small iiiustrative problems analized by means of fable
computerg.
2., A pllot problem solved on a standard I.B.M. punchcard

machine.

A large scale computation.

Small Problems

Problems of this category were designed in order to
check how the method .behaves in practive and how it accounts
for the wing sweep back, for torsional warping, snd for shear
lag effects, The computatigns were kept as simple as possible.

Some results are quoted.

Fig. 12 represents one straight and one swept wing
plate. There are four spars and three ribs, The fourth rib
is rigid and is part of the support where all four spars are
clamped, Computation involves

Stress points: On spars

On ribs
On penels
Hence 1 =

Redundant warping groups p =

Terms containing Poisson's ratio were omitted in the energy

formula. The curves a, b, ¢ represent the spar flange stress

at the clamped root. In particular:







a) Curve (&) represents Spar stress due to the bending
effect of two loads /2 applied at the corners of the box
as shcwn in File. 17, The bending stress is not the same for

all s in

Curve (b) represents spar bending stress due to torsion
applied by two loads < Q/2 at the corners of the box, This
is the torsional warping stress,
¢) Curve (¢c) represents Spar stress due to the bending
effect of two loads Q/2 applied at the corners of the 30-
swept box, An é&ppreciable stress concentration exists at the
root of the rear spar. Since the staticelly determinate part
of stress distribution is the same as in the case of the curve
(a), it follows that the Stress concentration is detected only
because the term siny Txy(ox+ cy) has been introduced in the
éneregy formula,

ixample of Figure 1 nas been selected in order
Investigate the shear lag effect, 105¢ lumping is done by
existing webs, the analysis. cannot be very a&ccurate, Only
four stress points can be introduced, two on spars ang two on
panels, and only one redundant warping group on the internal
web , However, a quite fair Stress distribution is obtained
if nine planar groups are considered. 1In this case, by

considering Structural Symmetry, we have

8tress points: On sSpars, real and fictitious, 15
On ribs, i 12
On panels 12

———

Hence 39




39 Stress Points

10 Redundant Groups

+ computed flange stress

—— continuous distribution

o, Skin Stress on Cross Sections
) i-1

g 18




Then redundant warping groups 1
redundant planar groups 9

Hence P = 10

The graph shows the distribution of o on three cross section,

X

1-1, 2-2, 3-3, BEvidently, the computed flange stress of a

certain spar 1s not necessarily equal to the value of the

continuous distribution at this place. The correction has

been introduced at the load carrying spar'only.

It can be concluded that methods of analysis expounded
in this paper agree, at least qualitatively, with what 1is
known of the subject from other sources, as 1t concerns
torsional warping, sweep back, and shear lag. One drawback
of the methods is apparent, however. If, there-are too few
stress points taken into account on each cross section, it
may be difficult to draw thefcurve representing the cont fnu-
ous distribution and the difficulty 1s greatest at the border
spars and ribs. Moreover, the resultant of a continuous
distribution for each flange 1is displaced in reference to the
position of the lumped flange force used in the analysis and
the error depends on the slope of the stress curve., It would
be preferable to have the stress distribution given from the
beginning by a curve instead of by discrete points. Since a
method of this kind still awaits to be discovered, the accuracy
of computation can be increased only at the cost of 1increasing

the number of stress points.

2. Pillot Problem

It has been anticipated from the beginning that any




large scale analysis of a multi spar/rib structure is quite
preposterous without a hiesh speed digital computer. 1In

order to check the method as to its applicability for auto-
matic computation a problem indicated in fig. 19 was devised.
The sketch represents, say, a dorsal fin plate built in
elastically at the root. The loading consists of airloads
aprlied perpendicularly to the plate at each spar/rib inter-
section and of moments and torques along the boundary. Their
distribution may be given by preliminary considerations. The
elastic suprort consists of a multl spar/plate so that each
spar/rib connection at the root can rotate around the line

F - P, The constraining moments may have any directlion in
the middle plane of the fin plate. Exact determination of
the foundation stiffness being a problem for itself, for
economy of time, the following approximate structure has been
substituted.

It is assumed that the fin structure 1s extended so
that quadrilateral cells are substituted for triangular ones.
The support itself consists of four beams as shown in fig.20
and of inextensible 1links denoted by heavy lines. After the
fin structure is connected with the support, the stgtically
determinate stress is, for the most vart, a simple beam
bending as indicated in the text and 1s absorbed by the
support as convenient. In order to make the support stress
independent from the choice of the statically determinate

system, it is assumed that six redundant warping groups act

through faces, or webs, as marked previouslv by heavy lines.




Airloads

Bending moment

Redundant groups
representing support

Support beams 7%
Fig. 20

These groups are connected with the support beams by means of
the inextensible links. Thus one vector moment of each

redundant group is displaced parallel to itself in the direc-

tion of the dotted arrow and resolved in two components, one




producing a beam bending, the other being assumed of no
effect on deformation of the root rib or of the support.
The problem, when simdlified a8 indicated above,
involves:
Stress points:
spars
ribs
panels
support beams
Thus

Redundancies:

Internal webs
support

Thus

Load points:
airloads
bending moments 4
torques 3
Thus a, b =25

‘The computation was started with three matrices

¥

C T

Kips 1k’ 1a?

and in the result matrices were obtained

Sia’ Zab’

All work proceeded smoothly and was performed in one hundred

hours of machine time. For some practical loading conditions

the following results were oEtained:







Fig. 23

Panel shearing stress Tm psi,

Fig. 24

undeflected

structure
deflected




3. Large Scale Problem

The success of the Pilot Computation has promgt-
ed the decision to proceed with a larsze scale analysis, The

considered structure is shown in Fig. 25. It consists of a

awept and tapered wing plate supported by a fuselage frame

work, Since the analvsis has to include symmetric loading
cases onlv, a rigid support is assumed at four points indicated
by letters RS in the figure. Interaction with the fuselage
provides an additional elastic support at points denoted ES.
On the undersggng;;g that the structure is airborne, the
applied loads are supposed to Be balanced always, so that the
supporting rigid reactions are either nil or equal to the
local loadﬁ acting in these places. Then the rigid support
provides solely a datum for measuring displacements.

72 independent loads are chosen at intersections of
spars with ribs and in some points outside the plate so as
to represent the neglected, or cut off, portions of the
structure. Ip a few instances the actual loads,.as for
example engine loads or undercarriage reactions, do not
coincide with the somewhat artificial layout of the reference
grid; 1t 1s understood therefore that local problems may
appear which will be solved by cutting off parts of the
assumed structure and by substituting the real one instead
while the stress distribution at the cut will be taken from
the maln analysis,

The wing plate 18 72 times redundant with MF

warping groups placed on all internal walls. The connection




with the fuselage introduces three more redundant groups of
the type MG and one redundant shearforce as indicated in
Fig. 25. Altogether the structure is 76 times redundant.

Stress intensity is defined on 173 cross sections,
which include all non zero spar and flange stresses and skin
panel shears, The number of stress sections considered in
the analvsis is really much larger since many elements have
been analized separately, and only the summaries have been
incorporated in the main analysis,

Preparation of the numerical material took about 45
man-weeks. The following matrices were established:

C Matrix of 29,929 elements, 1,040 non zeros,

ik

K Matrix of 13,148 elements, 370 non zeros,

ip
T1a Matrix of 12,802 elements, 1,568 non zeras .
It should be noted that the above time figure did not iéclude
all preliminary work, 1.e, assigning the.proper structural
cross sections, computing of effective widths and of elastic

modull. This part of the work was done by the Wing Groups of

the Stress Office, who also established, from available data,

m
a8 load Matrix Qa composed of 72 columns of m elements

representing alrload and structural welght .

The computation contract was placed with the Inter-
national Business Machines Company Ltd, in Toronto, Canada,
and executed by the Scilentific Computing Service in the New
York Headquaters of the Company. Althouch all previous work
has indicated that the undertaking 1s sound and reasonable,

8 great deal of uncertainty and risk was still involved,




The following questions could not be answered before the

numbers were fed into the computer:

1) 1Is the K_.,C well conditioned for inversion?.

p1€11cRKq
2) Since any computed stress intensity 1s a difference of
at least two large numbers representing groups, 1s it
not likelv that an overflow may occur or too many signi-
ficant figures may be lost?
How many numerical errors are still in the basic matrices
in spite of all checking and croas?cheoking?
Are the computation facilitiés reliable enough to allow -
the handling of matrices of the order 173 x 173.
The computation was brought to a successful end,
following results were obtalned:
1) Stress to Unit Load Matrix S;, of 12,802 elements;
2) Displacement to Unit Load Matrix Zgp ©of §,184 elementa;
3) gi Matrix indicating Stress at 173 Cross Sections in m

Loading Cases.

m
4) Za Matrix indicating Displacement at 72 Loading Points

v

in m Loa&ing Cases.,
Flgures 26, 27, 28, show a few interesting plots for the
loading case corresponding to a large wing bending. Since
at the present time, no comparison with experimental data 1s
posaible and no other exact computation exists, only a general
examination of the results is presented:
1) On the evidence of the supplied arithmetic checks and of
the continuilty of the plotted curves, it 1s assumed that the

computation 1s arithmetically correct. The checks were




orovided by:
Symmetrv of the qu Matrix, &1
Magnitude of the inversion error qu - épq -
Svmmetry of the Zab Matrix,
2) That the computation gives an adequatevpicture of the
stress and displacement distrioutiop can be seen from the
following analysis:
a) The chordwise bending at the centre line of the airplane
is as expected. Fip. 27.
b) There is no chordwise bending furfher outhoard, but this
is explained by the interference of the tip part. A correct
twist of the wing is indicéted, however.,
¢) At the aircraft ceﬂtre line the front spar is lifted up
by the redundant shear force shown in Fig.25,. This is indi-
cated .-bvy the bending curves, Fig.?G,_and by reduction of
bending stress, Fig.2s.
d) The maximum of the spar stress is shifted to tﬁe rear as

expected, "ie, 28,

The computation gives no answer, however, as to the shearlag

situation between the main spars and in this respect any

experimental evidence gcan be quite wvaluable.
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components in trapezoidal coordinates,
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EQUATIONS of EQUILIBRIUM for stress components in

trapezoldal coordinates.
The trapeiéidal stress components were defined in
Chap. II, 2, Forces are now prolected on the x, i.e. u,

axis, and on the y axis.

TuY(u2 - ul)(tanyg - tanyl)

u
2
Fig. 29

Projecting forces on the x axis vields in the 1limit

Y1+ Yz

g u?(tanY?- tanYl)cos -
2 2 2 d(uo..) du dy

. TNty

-0 u (tany - tany )cos—l———g + S du GOSY
o A 2 1 2

+7T u - u co8 cos -
UY2( - 1) YQ/ 23

-Tqu(uQ- ul)cosYl/cosw1

which becomes







¢) Evalution of [02]

The integral to be computed 1is

) o 2 2 y L4
av = - = (mcos vy - sin y)oro u ‘du dt

s

where t = tany

[02];2:

u

B
Fig. 31

Let [u2]ik denote the value of (mcosgy - singr)oro3 at the
corner 1, k of the panel, see Fig.27, and let us assume as
an interpolation formula

uj Up- u ¢ - ti

S U, u - u, £ - t: u.u
2 [02]22_3 1t 5 122
Uy to- ty Hy o= My a6y Ly
= 11 €2° g

(6?1 = [0°]

u2 u - ul t'Kg_ t‘ ulu2

2
T +
Ul t'g" ,tl [O' ]21

up upm ) Tpm 8] 2
where the factor ulug/'u2 accounts for the variability of o
along the spar., After the integration is performed and the
logarithmic terms are developed in series the following formula

results

+




o 3u
2 2; 4 (o2 ST Sl
[0%)gy = (10%)yy *+ (071300 - oy

3u1 )
2(u +u )

b (050 *uboi)on)(d -

Note that in the case of rectangular panel

)

(o s

, = H0%1 4 (68104 [0P)g+ [0%)55)

d) Evaluatlon of [oT]

The integral to be éomputed is

av = E% tany(op+ 0g)Tyyu du at’ (14a)

Let [o'r]1k denote the value of tanY(os+ or)t at the corner

uy
1, k of the panel, Assume that.the interpolation formula for
[ot] is the same as for [02] except that the factor uluz/u2

is squared to account for the variability of o4 and Tuy’
combosing the major part of the 1ﬁtegrand. Then the following

formula is obtained

EE([OT]II e [CTJIQ) + u2([01]21 + [01122)
2(u1+ u2)

[01:]av = (14b)

In the case of a rectangular panel
& =(lox *
(o ]av = 3llo ]11

3. ANALYSIS of TRAPEZOIDAL CELLS

Coneider a cell represented in plan view by Fig.32.

Sinece the skin surface 1s a plane, the following holds:

‘hyo/Xy = byp/x), hoy /%Xy = hyy/%)




It is assumed that the .above ratios are very small quantities
8o that there 1s no need to distinguish betwesen the panel

end its projection as it concerns lengths and angles. The
X, X
shearing stress of the panel is given by T = T 122 (in
: x

this section T 1b/in.).

" When the loading is a torque T, one obtains by the

well known formula
: [ 4

7
(hyo+ hyq)by
o
Hub2+ h22b1

T, = 'rmxg/x1 =

=
o Tm




where Vz = V% + Vé, and ¢ = blcosa + blsina tan(a + Yz)

1s the length of the diagonal., One obtains

Rl Tmbzcosa, R2 = Tmb

sina tan(a + Yz)

1

h h
Vz Tma~§g + 1mxl-gg = Tmhzz
X, x2
On substitution the above proposition 1is demonstrated.
A loading by redundant groups 1s considered now,
In Chap. II, 3, the redundant interaction of any two adjacent
cells was defined as a group of four forces applled perpendi-

cularly to the common face or wall and in four corners of it.

= F uy/a

F uz/a

Fig. 33

At this point, & slightly differcnt definition 1s introduced
which 1s equivalent to the former one for all internal walls,

except where the spar or rib direction 1s changed.




Group MF . Assume that the flanges ¥y = const.. are extend-
Lll .,

ed up to their intersection point at the origin., Thus two

beams are formed, a Yg-beam and a Yl-beam. Apply 8 down
force F to the Yg-beam and an up F force to the Yl-beam.
The flange forces 812 and S11 are given at once, and it 1is
apparent that the psnel shear T, can be obtained by consider-

ing the cell twisted by two couples of forces Q as indicated

in Fig.SS. The relation between the force F and the group

bimoment 1is
Ful = MFul
See Fig.34,

Group MFu2 Apply first a negative group MFu1. Then transmit

the flange forces from the face u to the face

3
indicated in Fig, 34,

Group MF‘u




The relation between the force F and the group blmoment 1s

F u2 = MFug
@

Groups NP and MFYZ . These groups should be consldered as

Yl
generated by torques having thelr vectors perpendicular to

the faces u = const. The relation between the acting torque

and the group bimoment 1s for the group 1 and 2 respectively,

Jr zcosrz = MF

3 cosY1 = MFYI’ ¥

Y1 i

Then the followlng results are obtalned:
e sl S M Tl 7

a(h11b2+ h22b1)

Sop =

By jeeny,

R . MFYl
E1a) hllcosY1

4, OBLIQUE BOUNDARY CONDITION.

Consider a cell supporting four redundant warping
groups. A cut made along the diagonal, Fig.ss, removes the
right hand side of the cell together with two complete
warplng groups. Since the groups are self équilibrated,
the stress system acting through the cross—sectlQn has no

resultant. It produces, however, a distorsion of the inboard
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structure in a tﬁree fold way, see Main Text:
I) Components normal to the cross section, of the cut flange
forces and of the panel action, generate a bimoment MH,
This constitutes a warping group of the first kind applied
to the next cell inboard. In particular:

at the point (2) the warﬁing moment 1s

MF. ,

MH2 = - M‘2 + Norm.components of MFYQ’ ugp

at the point (1) the warping moment is

MHl = - Ml + Norm.components of MFYl, uy

In the above, MQ and Ml stand for the lumped panel action

due to Tm; the corresponding formulae have been derived in

section 3 of this chapter, see (24) and Fig. 32. When

written In full, the above expressions become!

ME MP ME
u u
2 mzcos(a+72) 1 mzcos(a+yl)
cosy, cosy;

ug

cos(a+y_)
cosY, 2

MFyg MFy MF

m_sina Y2 ging

2
cosy,

m_sina
2

MFyo MFy, MEy
m cos(a+72) m cos(a+Yl)

1 1
cosy, cosy,

gosy, cOSYl

1
cos(a+yl)

cosy,

MF MF MF
e m_sina Yl m_.sina e

sina
cosY2 1 cosvl 1 cOSYl

Thus MH2 = MHl = MH and the existence of the bimoment is
demonstrated. (25)

2) Shear forces of the cut webs (spar and rib), expressed
by the terms such as Twh22’ together with a portion of the
diagonal shear force S prbduce a distorsion of the cross

Section. A8 a rule, this action will be stopped by a rib




belonging to the "R" rib,

Since, as it concerns this work,

i,/

1) Warping Bimoment

—

h

#
+

22

2) Shearing Stress

d HR"

3) Bending of "R"

Ml, M, represent
Lumpeg panel action

MF ..

represent cut
cosy.

flange action.

Fig., 35

all webs are assumed stiff in shear,

be followed any further.

the above action cannot

3) Components parallel to the cross section of the cut flange

forces, produce a bending of the "R" rib,.

by two bending moments:

Mrz made of S~-components of MFu

This 1is described

2 and

MFYZ’ Hrl made of S-components of MFul and MFYl’ each of them

being equilibrated by a portion of the moment Sh. Elgl 358

These moments generate stresses in the structure inboard as

explained in the main text, Chap., II, 6.

intensity at a particular grid point of "R"

Thus the stress

can be taken as an

average of the action of the four warping groups. (26)
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5, A SUPERFLUOUS MG GROUP

Consider a box as shown in Fig.36. Let the full
lines reprgsent the_real webs and dotted lines the fictitious
ones. All skin material is lumped accordingly. The affective
f}ange cross section for any spar, real or fictitious, is
equal to a x t. It will be shown subsequently:

Providing that the MF warping groups are set on four
‘ internal webs, and the MG trimoment groups at all
'intérséctions of fictitious webs (with real webs and
with other fictitioﬁs webs running at right angles),
no-trimoment MG should be set at the intersection of

r;al webs at the centre of the box.

(o)t

) e —
\ J ?

In other words, the MG group 1s superfluous,

\

MG,
R ,
a

- 4

|
i
2
i
]




Assume, for the sake of simplicity, that the box is of con-
stant depth h. There are 6 real webs, and 16 fictitious
webs in the figure where, also, the numbering system is
explained. Thus

i

-n < < in (n = 5 in the figure)
k
Assume that the stress system of the upper surface is

given by:

i negative i positive

X»é(n +1)(n - k), é(n - 1i)(n - k), k positive

o

T )
1 =0 Gta + titns k), Gli = ot baasile] s el Borabivs

where G 1s a constant. Stress system of the lower surface

is ecual and of opposite sign.

By Chep. II, 4, the flange stress at a c¢ross section

x =al 1is known. See equation (21).

At (1) G(n - 1)[-(n-n+1)-2(n-k) - (n-%-1)]/at =0

At (2) G(n - 1)[-(n - n + 1) + 0]/at G(n - 1)/at
G(n - 1)[=(n - 1) +2n - (n - 1)]/at = 26(n - 1)/at
Gl{n - 1)(n-k) + (n-1-1)n-k - 1) -
-(n-1-1)(n-%k)-(n-4)(n-%k-1)]/at = G/at

Similar expressions can be obtained for the ov stress at

any cross section vy = ak, -

™)
¢
On the other hand, consider a simple Airy group

= nG




within the assembly of Fig. 37.

(2
(1)

__Lumped flange area

Lt/n
—(4)

ey 3R

(3)

AL e B
Fig. 37

This group produces the following stress distribution:

At (1) Oy 0 by definition.

At (2 - nG(1 - x/L)/at  equivalent -G(n - 1)/at

At Zné(l - x/L)/at 2é(n - i)/at

At né/Lt G/at

As one can see the distributions Gy, and G are ldentical.

1t appears therefore that the stress corresponding
to the trimoment MG 1s a difference of two stress distri-
butions. One 1s due to

MG = nGh

the other 1s due to the trimoment distribution
MGy = Ch(n - 1)(n - k) etc.
without the term 1 = k = 0, Hence MGOO 18 not an independ-

ent variable. 1In the course of computation MG,  1s




represented by four warping groups MF, set on four internal

webs, as a part of them, and similarly ik is a part of

the genersl trimoment distribution as resultinz from the

Minimum Energy Principle.




6. PARTITIONING the PROBLEM

When analysing a multi redundant structure it 1s some-

times expedient to subdivide the task into a few smallw®sr

problems as can be seen on the following example. Suppose

that the main structure consists of three parts connected

in a statically determinate manner, each part being 10 times
redundant, If the whole structure were anslysed in one block
the number of punch-cards used in inversion of the elastic

. matrix is about 27,000; but if each part is treated separately
the number of cards is only 3,000, As a rule partitioning of

& problem should be undertaken only if the redundant link is
weak and if the number of partial problems ié not large, since
with modern high speed digital computers, as it concerns time
Spent on computation, the size of matrices matters less than
the inconvenience of imput and output of data. Therefore, if
partitioning involves frequent reading out of data and
extensive handling of magnetic tapes, it may be faster to
proceed without partitioning. On the other hand, partition-
ing mayv be advantageous if some parts of the structure are
expected to change or to occur in variants. Then, incorporation
of changes may be done with little cost.

In establishing partition boundaries and redundancies, it
is necessary to distingulsh between a simply connected
structure and a multiply connected one, Suppose that the
structure, is built up in the following way: There is a
structural part, the base connected with the foundation,

This part supports other parﬁs which carry other parts, ana so

on. If no other connections exist between parts as those




explained, the structure resembles a tree and is called a
simply connected redundant structure. In this case, the
connéctions, of the base with the foundation, of the parts
with each other, although statically indeterminate in general,
are such that the corresponding redundancies affect directly
two adjacent parts ohly. These redundancies are denoted here
as border redundancies, in opposition to the internal redun-
dancies which are supposed to be eliminated in the first

step of computation, In a simply connected structure there

is never any doubt which load path leads to the foundation.

If the structure possesses other connections, as if

some branches of a tree were grown together, it is called a

multiply connectéd structure. In this case, redundancies

exist which affect several parts forming a closed circuit,
Subsequently they are referred to as closed circuit redun-
dancies, In a multiply connected structure, it is, in general,
ambiguous which load path leads to the foundation. Some
informetion on stress systems in multi connected bodies can

be obtained from S, Timoshenko's Theory of Elasticity, par.39,
p. 120, (Ed, 1951).

There is no diffieculty in establishing rules of partition-
ing. A portion of the structure is cut out and the statically
determinate reactions and redundancies at the cuts are defined.
Then the loads are introduced:

a) The air and inertial loads applied to the part in question,
b) The statically-determinate action of the attached

structure and the corresponding border redundancies if any.,




¢) In a multiply connected structure, the closed circult
redundancles.
All these iltems are summarized as loads in general and the
problem 18 solved for stress and displacement in the usual
manner as indicated in Chapter III, .In doing so the follow-
ing matrices are obtained for any atructural part:
stress to unit load Sy

a

displacement to unit load : Zab
Note that in the above the staticaily determinate reactions
of a part do not appear as loads acting on the part. They
appear as loads acting on the supporting structure; 1in other
words, on parts situated farther down on the path to the
foundation, .

In order to combine the partial problems for final
solution, a unified index and notation system 1s introduced
for the whole structure. Accordingly:

A) Loads Qg of partial problems (acting loads, border and
closed circult redundancles) are denoted as fictitious

stresses 3,; I1ndex system u, v.

These loads are expressed in terms of the remaining

redundancies Fp by means of & matrix Kup; index

system p, q, and by means of

the 1oad§ applied to the whole structure. These loads
are denoted Q,; Iindex system a, b. Here the indices
a, b, have acquired a new meening and run through all
applied load numbers ohtained when all partial problems
are put together. The matrix relation is Tua‘

/
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The overall strain energyvmatrix is bullt up conseguently

of all partial matrices Za£

the procedure of Chapter III can be applied, with index

and is denoted Cuv' Thus

u written for i, and two new matricés can be obtained:

1) Sua expressing all loads and all redundancies,
treated as loads in partial problems, in terms of
acting air and inertia loads.

2) Zuv presenting the overall displacement matrix,

The overall stress to unit load matrix is evidently

S1a = Siusua.

where the index 1 runs through all stress points of the
structure. The computations involved in the overall prohlem
are rather simple due to the small numbers of unknowns and to

the fact that the matrix Tua is for the most part & unit matrix.







