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'7'HE0kY of MULTI-SPAR and MULTI-RIB 

WING STRUCTURES 

Alex. Grzedzielski, P.Eng, Dr.Eng. 
3en1or ~tress En~1neer, Avro Aircraft Ltd. 

A Method of stress and deflection analysis of low 
aspect ratio wings is presented, proceeding entirely with 
redundant stress d1stribut1ons. The effects of wing sweep, 
taper, late:'Rl contract.ion, and torsional warp.ing are cor­
rectly acc ount ed for. The method presumes the use of a high 
speed digital computer. 
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I. INTRODUCTION 

The stress analy'sis of high aspect ratio subsonic 

wings was a development of the beam theory, and although the 

primitive bending stress distribution had to be corrected, 

most of the times, by warping and shear lag distributions, 

the whole analysis was basically one dimensional with the 

span coordinate as independent variable. With the advent of 

the low aspect ratio supersonic wing, the analysis has be­

come a chapter of the theory of plates and, therefore,a two 

dimensional problem. In these wings, stress distribution 

is defined in terms of two local bending moments acting at 

different angles and of a local torque, all three depending 

on span and chord coordinates. Thus computations grew ex­

tremely involved and tedious, and quite hopeless without an 

electronic computing machine. 

There are two possible ways of approach. One is 

through determination of displacements, the other through 

redundant distributions of plate bending and torque moments. 

In the first method, displacements of selected wing points, 

at spar and rib intersections for 'instance, are assumed as 

unknown quan t ities, Then, either the stress components are 

expressed in terms of these unknowns and substituted in the 

equilibrium conditions, or better, the strain energy of the 

structure is found in terms of the unknowns and the virtual 

work theorem is applied. In either case a large set of 

linear simultaneous equations is obtained, connectin~ the 

unknown displacements with the known acting loads. The pro-
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cedure is known as the method of influence coefficients. 

In the second method, at first an approximative 

moment distribution is assumed so as to satisfy the equil-

ibrium conditions exactly, but leaving strains still incom- 1 

patible. Then, the assumed distribution is correcte,d by 

several properly chosen self-equilibrated groups of internal 

loads. Their magnitude is determined from the Castigliano 

theorem, again by solving a large set of linear equations. 

Subsequently, the stress distribution is determined and, if 

desired, displacements are computed by the dummy load method. 

In practice, the two methods are complementary 

rather then alternative. The first one is best suited if 

the object of computation is to es~ablish displacements as 

functions of the applied load ., i.e. in aero-elasticity and 

in flutter analysis. However, the method is not adequate 

for detail stressing. It is common knowledge that quite a 

crude assumption concerning the stress ·distribution yields 

displacements which favorably compare with experiment. 

Hence, a method designed so as to be acceptable for aero­

elastic purposes with the least number of unknowns, does not 

provide sufficient information for stress analysis~ But the 

difficulty lies deeper. According to Ref.(3) Part 1, Chapter 

IV, 4.1, even an exact solution of the plate theory, when 

given in terms of displacements, may not, if at all, pro-

duce stresses with acceptable accuracy. If so, what accuracy 

can one hope to obtain from a method using finite differences, 

in terms dependin~ on third or fourth differences? The 
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displacement metho~ does not yield stress distribution as a 

bypr~duct. On the other hand, a method satisfactory for 

detail stressing may be too la~orious for aeroelasticity. 

This paper intends to contribute to the stressing 

method of low aspect ratio wings, and proceeds entirely with 

redundant stress distributions. The roots of the expounded 

technique are in the paper of Yuan-Cheng Fung, Ref.(2), how­

ever many vital features have been added and the applications 

are much wider. The method accounts correctly for taper and 

sweep effects, for Poisson•s ratio, for torsional warping, 

and for the shear lag effect. It is designed so that the 

bulk of arithmetic operations is performed by high·speed 

digital computing machines. 

II. OUTLINE OF THE METHOD 

1. Preliminary Remarks 

The usual hypothesis in the analysis of thick skin, 

multi-spar/rib structures is known as the lumping method. 

Accordingly, when considering wing bending, skin material is 

thought to be accumulated along spar and rib flanges, and it 

is left in its place when considering wing torsion. Clearly, 

the hypothesis is admissible, although it neglects the effects 

or lateral contraction, (~o1sson 1 s ratio) and seemingly 

yields good results for straight wings. However, the hypo­

thesis is unable to account for the effect of wing sweep, and 

for any variation of the stress distribution between the 

lumped flanges otherwise than by estimation of the e1'fective 
·'>.' ,;~;_),1 , 

flange area. 

• 
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It is shown in this paper that in order to account 

for both · sweep and lateral contraction, it is necessary to 

retain some double products in the stress energy formula: 

spar direct stress times panel shear, spar direct stress 

timesrib direct stress, etc. Since these terms are omitted 

when proceeding by the lumping method, the inadequacy of the 

method is demonstrated. However, the concept of the lumped 

flange area is very handy and it is used on many occasions 

in this paper, especially in establishing relationship be­

tween the loads, external or redundant internal, and the skin 

stress components. As far as concerns the stress energy of 

the wing plate, a continuous stress distribution is assumed 

so that necessary integrations are always performed over the 

entire panel, limited by adjacent spars and ribs. In this 

manner the lumping procedure appears as a mathematical device 

and not as a physical hypothesis. 

In order not to overload the paper with detail the 

analysis below is limited to the structures shown in figures 

1 and 2. The full lines repr e_sent shear webs: The spar webs 

converge to one point and the rib webs are parallel. The 
i • 

structure is svmmetric with respect to the middle plane.. The 

upper and lower skin surfaces are planes and have a common 

trace passing through the intersection point of spar .webs. 

The angle these planes make with the middle plane is very 

small. 

Since with a smai1 number of webs the picture of 

stress distribution obtained by the lumping method may be 
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quite crude, fictitious spars and ribs are introduced a~d 

represented in the fi~ure by dotted lines. These elements 

have flanges ~nly, but no shear webs. Their number is 

arbitrary a~d is limited by economy reasons only. Lumping 

of the material into spar flanges real or fictitious, is 

done as indicated in Fig. 3. 

-~ -
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Fig. 1 
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In this manner the structure is referred to rect­

angular coordinates x,y and to trapezoidal ones u, y, 

between which a transformation holds: 

'· I 
X = U, y == u tany ( 1) 

The directions of the shear webs determine a svstem 

of reference for stress components. As a rule, in elasticity 

systems of reference other than Cartesian are introduced in 
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order to make the 8ituation at the boundary easier f or 

mathematical work. As, · in t~e present case, forces are fed 

into panels by shear webs arid the panels are of trapezoidal 

shape, and •since no ri~rmal stress of any considerable magni­

tude exists at the leadin.g;, ·or trailing, edge, the trapezoidal 

system of coordinates has been chosen. 

Fuselai;i:e Side 

"" 

. y 

- - X' U------- -·•· -----

Such a system is by no means easy to apply and 

requires some knowled~e of the tensor calculus, at least for 

guidance. In this paper, however, no direct reference to the 

tensor technique is made and the trapezoidal stress components 

are eliminated except for the panel she~r. However it is 

necessary to use them at the beginning. 

In addition to the main trapezoidal stress components 

the following are used in the text: 

a) orthoi;i:onal stress components ox, cry, ~xy of the system x,y, 

b) spar normal stress crs; 
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o) rib normal stress or. 

Stress energy of the panel is expressed in terms of os. or' 

and of 't (average trapezoidal panel shear). 
m 

Spar, or rib, 

normal stress is computed by dividing the local bending 

moment by the lumped area and the local wing plate thickness, 

rib flange lumped 
are.~• AJ.' -- - __ _ _ 

spar flange lumped 
area As -...____ - • ·,. 

---- \ 

Fig. 3 

•. j ----

-··· 

2. Trapezoidal Stress Components. Energy Formula 

Stress components in the trapezoidal system u, y 

are denoted by ou, oy, 'tuy and defined iJi .j.'lg ~4. In parti­
,~ . ·· ~~.;. 

cular with reference to this figure'F' ~ •· . J• 
•"l~···; ··,:: • • , ... 

• .. c. ~- •• 

c;.., 
.0 .c outu2 (tany2- tany1 ) tu2·( tany 2- tany1 ) 0 y s:: const. ,-It,/} 

:;:ls:: s:: 
S:: 0 0 0 

..-t s.. ..-i ..-i 

'tuytu2 ( tany 2- ta.ny1 ) .c .µ tu2 (tany2- tany1 ) .µ u == const. (I) .µ 0 0 
0 (I) (I) 
s.. '0 O'l s.. 
0 (I) ..-i 

oyt~u2 - u1 )/cosy2 
c;.., .µ (7) t(u2 - u1 )/cosy2 

'0 ,: const. .µ (7) u 
Ill ..-i 0 (I) 

s s.. .c 
tll O'l 0 .µ 

'tyut(ue u1 )/cosy2 
s:: s:: t(u2 - u1 )/cosy2 const. ttl al (I) s:: y = 
(I) s.. .c ..-i 
13 .µ .µ 

where t is the skin thickness. 



( i_ 

-8-

The above stress components satisfy conditions of 

equilibrium on the infinitesimal element du.dy: 

Tuy = 'ty1i 

----- ~ 
,_/- I-[ __ • 

d(ucr) 
u 

du 

.-·-

i 
'\ ~ 

Fig. 4 

a-. 
+ ~ cosy = 0 

• eh 

't'yu -

_____ _,... 

'Tuy 

+ = 0 

Y2 

au 

Y1 

u 

(2) 

For derivation, see Appendix. By Fig. 5, the following 

transformation holds between ou, cry, 'Tuy and ax, ay, 'txy• 

J ay ,,,., 

Fig. 5 

I 

a i 
Xj 

--- I 
'txy i 
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~ : ~ + o siny 
ry UY u 

0 .. o secy + 2~ tany + o siny tany y uy u y 

A mathematical expression for the strain 

in terms of ox, oy, ~xy stress components 

~;[cr2 
2 2 

== + Oy - 2moxoy + 2( 1 + m)~xyl 2E X 

(3) 

energy of 

is known 

dx dy .. 
where m de_?otes Poisson Is ratio. _ Introducing ou, oy, ~uy 

and replacing dx.dy by u.du.sec2Y,dy, obtain formula tor the 

strain energy of the panel in terms of trapezoidal coordinates 

V c ~ -r[o2 
+ o2

. -
2E) u Y 

2 2 2 u du dy 
+ 4siny(ou + oy)~uy + (E/G cos y +Jsin y)~uyl 4 . ·' ;_ oos y 

(4) 

~ ,.l. • 
Here the particular terms have the fol~o•~n~ 

, i. , 

2 
meaning. The ~uy 

term represents the shear energy of the,:,,panel. 
j · - ~ 

2 '.' 
oy terms are interpreted as bending erie~gy of 

,, •.. . 

2 
The ou and 

spars and ribs. 

The term containing ouoy introduces the·.:Poisson I s ratio 

coupling. Finally the term 4siny ~uy(cru + oy) takes care of 

the swept wing coupling; if the term is omitted the computa­

tion will not show any stress cencentration at the trailing 

ed~e in pure bendin~. In the followin~, the energy expression 

is arranged for numerical computation. 

a) Pure panel shear 

The equilibrium conditions of trapezoidal stress 

components admit as a solution 

OU • 0, ( 5) 
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where C is a constant of integration. When transformed 

into the x, y coordinates the above yields the known 

distribution 

OX = O, Oy ::: 2Cy/x3 , 't'xy ::: C/x2 

which evidently does not satisfy the compatibility condition 

exactly. 

y 

• 

The solution is used below with this reservation. 
~1 

't' _,., 
uy 

t ~ 
t 

-------

-~-
h2 

~ 

~ hl j-
• # __ .,,, .. -- . t -~ Ty 

~ y 

u, X 

Fig. 6 

On any cross section y = const., the shearing 

stress gives the resultant 

t/:y 

ul 

du secy 

This force has in the x- direction a component, fig.6, 

T ... Tycosy 

By integration 

,.T = tc 
u2 - ul 

u2ul 

y 
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Hence the panel shear becomes 

(6) 

where . ' • 
"t - T ( 7) 

m (u2 - u 1 )t 

and h is a linear function of u. "tm is.tibe averap;e 

trapezoidal stress of the panel. 

The strain energy corresponding to the state of 

shear, "tm' can be evaluated by elementary integration. 

2 ~ 

v = At"tm (1 + 4G/3E(tan2r 2+ tany2tanr1 + tan2r 1 )) 
2G (8) 

where i 2 2 A = -2 (u
2 

- u
1

)(tanr
2 

- tanr
1

) 

The shearing stress distribution of a panel limited by two 

spars and two ribs, real or fictitious, is obviously more 

complicated. However, it will be shown later that by using 

the lumpin~ device it is possible to connect "tm with the 

internal redundant loads. Thus, the above formula is a use­

ful approximation of the shear enerizy of the panel. 

b) Spar flange direct stress 

According to the ·lumping method a state of pure 

tension should be assumed in a spar flange. '1-'his state is 

given by 

= a (s), 
s 

a ., 0, 
y 

"t z: 0. uy (9) 

a (a) is the conventional direct stress of the flange. It 
8 

varies along the spar due to panel and web shears acting on 
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the lumped flan~e. However, lt is assumed constant over a 

certain ran~e of y, the an~ular width of the spar flange. 

Then the strain enercy of the f'lange becomes 

A ls the spar flange lumped area and s ls the length 
s 

(10) 

coordinate, and ds e du secy. On the assumption that panels 

and webs detelop shearin~ stres~ onlv, o (s} for each flange 
s 

se~ment depends on lhe values of the flange stress at both 

ends of the segment, i.e. on 0
8 

at two spar/rib intersec­

tions. Since A (s) is known the formula can be integrated. 
s 

See Appendix. 

c) P.ib flan~e direct stress 

A simllar reasoning applied to rib J'lanp;es yields a 

state of pure tension in a flan~e 

OU == 0, a secy == o ( r) , 
Y r 

't == o. uy 
( 11) 

a.nd express18n for the straln ener~y of the rib flan~e becomes 

dV ::: 1 o2 (r) i,, dr 
2E r r 

A ls the rib fl~nue lumoed Rroa and r is the lenRth 
r 

coord1n~te, and dr = dv. 

As before a (r) de;,en".is on the volues the flange stress 
r 

(12) 

attains ~t two spar/rib inter~~ctlons at both ends of the rib 

flanr.:e sep;ment. 

d) Couplin~ terms 

It Is understood he•e that for lar~e angles of sweep 

the rib arr-an;:,:e~ent 1nd1cnt.ed ln figure 2 would be adopted 
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in preference to the arrangement of figure 1. Therefore Y 

is not a very lar~e angle and the sweep coupling term ie 

rather a correction. On introducing spar and rib direct 

stresses, the inte~rands of the couplin~ terms become: 

1) Poisson's ratio 

11) . panel sweep 

(m cos2 y - sin2y) o o 11: Co2 ] r s 

Remembering dA = u du dy sec2y and taking some weighted 

avera~es of the values or, 0
8 

defined in the four corners 

of the panel and introducing the average trapezoidal shear-

ing stress 'tm in the latter expression, the integrals 
become 

1) V :::, _At 
Co

2 J (13) E av 

11) 2At V II: [ O't] • (14) 
E av 

Thus strain energy of the structure can be written 

in terms of 0 8 and or known at each spar/rib intersection 

and of 't for each trapezoidal panel. The formulae are m 

exact in the limit A-o. See Appendix. 

3. RedJndant Moments of the First Kind 

Let Q be a unit load acting perpendicularly to 

the wing plate of figure 2. The statically determinate 

part of stress distribution due to Q is obtained by sever-

in~ the structure along the lines 
-·-·-·-·- I and II, and 

amounts to a simple spar bending. Were it expedient, some­

times, to introduce a torque as a . unit load, the statically 
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determinate stress would be the simple Batho shear flow 

a.round the whole winr:z cross section or a part of it. Of 

course, any stress distribution obtained in this manner does 

not meet the condition of compatibility of strains and 

should be corrected by redundant distributions satisfying 

the theorem of least work. 

Consider a wing plate as represented in figures 1 

and 2, with the dif ference that the whole skin material is 

lumped over the existing real webs i.e. all intermediate 

spars and ribs h ave been omitted. Suppose that the structure 

is subdivided in separate cells by cuts ma.de through the 

internal webs, and assume for simplicity: -

a) all webs are infinitely stiff in shear, however, they do 

not op ~ose any ex t ens ion or compression of flanges; 

b) no strain exists in webs in the direction perpendicular 

to the mtddle plane of the win~; and further 

c) flan~e extension does not affect the shearin~ stress of 

ad_.l.acent panels. 

Since material lumping is a mathematical device only, the 

latter statement expresses merely the principle of super­

positi on of stress components. 

Incompatibility of deformation due to some assumed 

statically possible stress system can be visualized thus: 

Supposea.11 cells h ~v~ been manufactured to the dimensions 

they would acquire under the assumed stress if they were 

isolated and free to deform. In general it would not be 

possible to fit the structure to~ether without gaps, and 
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any isolated oells~ould always be fitted in three corners or 

their oommon wall, but not in all four corners. In other 

words cells would behave as a four legged table on an uneven 

floor. This suggests the following concept of static~lly 

indeterminate groups of stress. 

Assume, by hypothesis, that the redundant interaction 

of any two adJacent ce'ils is reduced to a group of four forces 

applied perpendicularly to, and in four corners, of the 

common faoe or wall. See figure 7. Forces acting on adjaoent 

cells are opposite to those drawn in the figure. Forces ot 

" Fig. 7 • 
i 

I 
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one group are expressed in terms of a bimoment quanti~y MF 

as shown in the figure. In particular, bimoments or warping 

groups MFu act on or through faces u c oonst., bimomenta 

or warping p:roups MFY act on or through faces y-= oonst. 

By hypothesis, each ~roup produces stresses in elements of 

two wing cells only. Thus all isolated cells are considered 

as statically determinate as it concerns their loading by 

redundant groups. Incomplete cells, with a side web missing 

for instance, are statically impossible and structures ot that 

kind are not the object of this paper. 

Assumin~ that all bending material ~as been redis­

tributed so that every cell possesses some flange material 

along its ed~es and assumin~ that panels develop shearing 

stress only, it is possible by applying the rules of Statics 

t o find in any desired place the ~alue of a flange force, or 

a panel shear, and of a web shear. It appears that the 

panel shear, its average value ~m• depends on four groups 

acting on the cell. However• it is not immediat,ely o:t.ear 

how the flange direct stresses 0
8

, ar should be evaluated. 

By separating the s_truc,ture into individual cells 

the fl~nges have been cut lengthwise and the amount of 

bending material to be assigned to each cell could not be 

specified. Since strains have to be ~qual in both parts of 

the same flan~e, after the structure is put together, an 

additional redundancy must exist so as to provide tor a 

proper redistribution of· the flange foroes. Consequently 

as, or are equal to the difference of two flange forces, as 
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computed from adjacent cells, divided by the total lumped 

cross section of the flange, and the additional redundancy 

does not have to be considered. 

Denoting: 

a
2 

= a secy
2 

one obtains, see Appendix, 

MFu2bl - MFulb2 + MFy2a2 - MFylal • a(h11b2 + h22b)t . ~m 

MF = h A cosy cr 
u2 22 s22 2 5 22 

No flange stress such as or due to MFu2 , or 0 8 due to 

MFy2 , etc. should be considered, the effects of two cel l• 

under the influence of the same group cancel each other . The 

shearing stress of spar or rib we~s is found by summing up 
i 

contributions of two adjacent cells on the web the cells 

have in common. 

Thus all three stress components or, 0
8

, ~m can 

be established (with little trouble) in terms of the applied 

load and of the redundantgroups MF'. Then the strest'l compon­

ents are substituted in the energy formula and the seoond 

theorem of Castigliano is applied. Hence all group values 

KF are obtained by solving a set of linear equations. · It is 

{ 15) 

(16 ) 

(17) 



discussed later how this somewhat enormous operation should be 

performed. There can be no question, that, as long as the 

number of unknowns is small, the procedure should not present 

any diffioulties from the mathematical point of view. What 

is debatable is the accuracy of the solution obtained which, 

probably, should not be large for a two or three spar structure. 

The main question is whether the whole pro~edure makes any 

sense at all with a lar17-e number of spars and ribs. The 

answer to this important question ie in the affirmative, and 

we proceed to show that in the case of a rectangular .~rid of 

webs, with the web spacing ap-roachin~ zero, the above ~roup 

functions MFu and 

of the plate theory. 

PHO OF 

MF become the Southwell stress functions 
y • 

Assume a rectangular grid of webs as indicated in r'ig. 8. 

a C 

Ju 
ak 

k 

->-

uc l 

--7. \' 
i 

X tix a, b, C' spar stations, 
i, k, 1, rib stations. 

spar direction 
t akin thickness, 
h plate thickness. 
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Ribs may be spaced by ox and spars by oy. The plate thick­

ness h may be constant all over the wing. Hence the four 

forces belong to one redundant group are of the same magnitude. 

Denote group forces acting in the x direction by U and group 

forces acting in the y direction by v. Then in notations 

of the figure (dy = u dy). 

u = MFx/h, V = MFy/h (18) 

Both u and V vary from one face to another. Spar, rib, 

and panel stress due to group forces is a;iven as follows: 

Bending stress of the spar 

Ubk -
a = -

X oy 

I 

Bending stress of the rib 

a = -y 

k at the 

Ubi ---t 

b at tp.e 

--------

rib b 

au 
dy,t 

spar 

av 
dxt 

(19a) 

k 

(19b) 

Shearing stress of the panel a-b-i-k (by Batho formula) 

0:: 

26x t 

[au+ av1 1:... 

ax ay 2t 
-- (19c) 

In the limit ox, Oy-- O, finite differences become deriva­

tives as indicated. This result is compared with the theory 

established in reference (2). By equation (8) and (36) of l.c, 

it follows that U and V are the two stress functions of 

Southwell's theory of plates. Hence, it is legitimate to 

expect that, for a large numbe_r of spars and rios, computations 

suggested in this paper wili beh~ve as a numerical solution of 

the theory of plates. 
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4. Redundant Moments of the Second Kind 

If there ~re only few spars on the chord line, the 

shear lag effect between spars becomes appreciable, and the 

accuracy of a stress distribution obtained by methods of 

Para.3 may be in doubt. The solution can be improved, how­

ever by introducing another redundant quantity MG. While 

the MF ~roups were related to the Southwell stress func­

tions, the new quantity is akin to the Airy !<'unction / 

Consider, with reference to figure 8, a quadruple 

cell extendin~ from u1 to u
3 

and from y
1 

to y
3 

with 

intermediate webs at u 2 and y
2

• By severing the structure 

through the middle plane and taking mo~ents around the web 

intersection line at ui, y2 one can show easily that no 

shearing stress is assigned to all external webs if the 

relations hold! 

h23 
a23 

b32 ', 

8 13 I b y2 

hl2 
22 a2 

MFU2 
' 

~

.MFY2 h32 "' 
bl2 MFn 21 

b31 al2 Y1 

bll 

all 

Fig. 9 
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MFu2b22 MF'na12 MFu2b22 
+ 

MFy2a22 
C' 0 + II: -

h23 h12 h23 h32 

MFu1 b21 MFna12 MPu1b21 MF'y2a22 
0 + .. + = 

h21 hl2 h21 h32 

But then, there is no shearin~ stress in the internal webs 

either, ss followsfrom the equilibrium condition of the common 

edge of three webs a13 , 1123 , b22• 

The above four groups MF can be derived from a 

sin~le quantity MG such that 

(20) 

By definition the trimoment MG is the redundant quantity 

of the second kind, and does not affect any web shearing 

stress in the ne1Rhbourhood. Consequently it can be used 

for correcting stress distribution between real webs. We 

shall show now that the stress distribution due to a large 

number of GM groups approaches in the limit a planar stress 

distribution. 

PROOF 

Let figure 10 represent a flat sheet of constant 

thickness for which a grid of bars connected by shear panels 

is substituted. 1he bars are at right angles and, by the 

lumpinR procedure, have their cross section equal to the 

spacing a, times the sheet thickness t, and are supposed to 

develop direct stress only. The connecting shear panels 
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carry shearing stress only . 
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Fig. 10 

By cutting out an assembly consisting of three bars parall el 

to the x-axis, of three bars parallel to the y-axis, and of 

four panels, a self equilibrated system of stresses can be 

. defined. There are 

·l) four panel shears of the magnitude 
+ G/a lb/in -2) at the centre the bars are in tension equal to 2G lb 

3) at mid points of four sides the bars are 
in compression - G lb 
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4) no bar stress exists at the four corners of the assembly. 

The above system of stresses, when set at the inter­

section 1, k of bars, is defined as the G
1

k plana; redundant 

group. The str·ess system due to the trimoment MG is 

equivalent in the limit u ...... oo, y--o, to two groups Gik, 

one being formed on the upoer skin surface, the other, of 

op,osite si~n, on the lower skin surface. If the bar spacing 

a decreases, the stress distribution ~enerated by an increas-

ing number of Gik groups converges toward a distribution 

d~rived from an Airy stress function. Indeed, the bar stress 

is respectively, 

= 
(21a) 

= 
(21b) 

the panel shearin~ stress is 

"t' "' xy (21c) 

In the limi t the above expressions become 

a t/a : 
X o t/a = y ,: t/a 

xy 

Thus Gik can be used as a stress function with a method 

proceedln~ with finite differences. Hence, any system of 

Gik satisfying the second theorem of Castigliano, for some 

assumed statically determinate stress distribution, is an 

approximate solution of a planar stress pronlem . 

~he ~roups ~ik are the only ones which can be 

(22) 
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used in plane stress problems. In plate probems, however, 

the groups, or rather their associated trimaments MG= Gh, 

are complementary to the MF warping groups introduced in 

para.3. One can expect that the relationships proved for 

rectan~lar coordinates and constant plate thickness will 

hold for trapezoidal coordinates and tapered plates as well. 

Thus a way appears open for numerical analysis of swept 

and tapered win~ plates with practical l y any arrangement of 

lfebs. 

5 0 Analysis by Redundant Groups 

If MG groups are used in order to improve an 

analysi~ which would not be satisfactory when done solely 

by MF groups, care should be taken that not too many MG 

groups are put in operation. For instance, no MG group 

should be placed where four real webs intersect. 

Consider a wing plate as shown in figure 11, 

clamped at the root. 

-

p 

I 
--Y -­

! 
I 

1 ---- ·* 
I 
! 

' i 
I 

--- ·f 
! 

J --
1 
I 

Fig. 11 
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The full lines may denote real webs and the dotted ones 

fictitious webs. Suppose at first that all bending material 

is lumped alo~the real webs. Thus a redundant group is set 

on each web common to two cells, and two groups at the 

boundary. This gives 12 groups of the type MF. The statically 

determinate part of the stress distribution is simple beam 

bending. An analysis of this kind has been made for a four 

beam structure and results are show~, further below. As far 

as concerns the case of figure . 11 it is quite obvious that 

the accuracy of a computation with 12 redundancies may not 

be/satisfactory since only three points of the bending stress 

curve are obtained at each cross section. Similarly, _ t he 

information on panel shearing stress is very poor and reduces 

to two values at the root. 

A better approximation is reached if MG groups 

are introduced in all points marked by x, and lumping is 

chan~ed accordingly . This increases the number of redundant 

groups by 36 and the total indeterminacy of the structure is 

now 48. Seven points of the bending curve and a much finer 

picture of panel shears is ohtained. No MG group~ should 

be placed at intersections of real ribs with the middle spar, 

however. The reason is that any MG group at such a place 

oan be represented as a_ linear combination of four MF groups 

set at, or acting throu~h, the four adjacent webs and of 

fourteen MG groups in the vicinity (six on webs and eight 

within panels) . The demonstration is provided in the appendix • 

If all dotted lines represent real webs, the total 

, 

.. ..,y 

' I 
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redu~1ancv of the structure is inc r eased.to 88. An addition­

al redund~ncv may appear at the clamped boup.dary if some 
"'~ 

vertical displacement of the foundation is oossible. Two 

cases s~ould be considered: 

a) No displacement is possible at the root. In this event 

all elements of the root rib are assumed infinitely rigid, 

and the derivatives of the stress energy function are put 

equal to zero as indicated by the Castigliano theorem. 

b) The root is not rigid and some vertical displacement of 

the foundation can occur but no rotation of the spar ends. 

In th1s case a third type of self equilibrated groups, 

~eferred to as ~roup ·p~ or MP, has to be introduced and 

term~ 1ncorµoratin~ the foundation energy added to the 

total ic,nerITT of the system. The group P!-' is composed of 

three force5, actin~ perpendicularlv to the plate as shown 

tn f1'11.lre 11, ~hen a condition, av = o, expresses that 
dP 

d1splt1.cemE1nt ,f the point of application of one i:7;roup force 

re1At1.velv to the noints of application of the other two 

forces J R the s· me for both t-he wing pl·, te and +;he foundation. 

Ir1 ~Eonerai.. t"e number of Q;roups P at t he foundation is 

Rqua1 to the number of spars less two. It is understood 

• 

that forces com ,1os .ln~ a group P are in reality n ot concentrated 

b•Jt roprr.~:ient a distributed action. Here again the principl e 

0f lur,plnP: !s n sed to advantage . in simplifying the computation. 

Tht'l bounria ry condition of fi~ure 2 is discussed in 

the ~ext section. 
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6, OBlique Boundary Condition 

This condition is a topic in itself. In order 

to generalize, let us assume that the structure consists, 

see Fig. 12, of a swept outboard part, and of a straight 

inboard part. The first rib of the unswept part is referred 

to,subsequently, as the rib at the oblique boundary, as the 

common rtb, or simply as the rib "R". 

The main difficulty encountered with this problem 

can be summed up in the foll0wing manner: Since the system 

of coordinates of a multi spar/rib structure is prescribed 

by the direction of spars and ribs, both stress and displace­

ment on either side of the oblique boundarv are related to 

different coordinates. Hence the necessity, when · establish­

ing conditions of equilibrium at this boundary, to perform a 

transformation of stress components. The lumping method 

used in this paper · assurres, however, that the skin between 

spars carries shearing st,ess only. This assertion cannot be 

transferred to the other system, for it is known that the 

state of stress denoted as pure shear exhibits normal stress 

on any obli ,:i.ue cross section. Thus the lumping method, 

which merely results in inaccuracy, if the computation remains 

in one svstem of coordinates, amounts to a contradiction 

when a transformation is involved. It follows that the 

distribution of stress com ponents at the oblique boundary 

cannot be transformed in the ordinary way and that the device 

of lumping must be incorporated some~iow in the transformation 

procedure·. 
• I 
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This method has already been used by other authors. 

In the extension of the Procedure it is assumed that the 

tria~gular cells of the outboard part are protruding inboard 

so as to form full quadrilateral boxes, to any one of which 

four redundant ~roups can be applied. 'J'hus two urposes 

are served: First, a sufficient number of narameters is 

provided so that stress of anv spar or rib at the bo'mdary 

can be altered as, and if, required by the condition of 

minimum strain energy. Hence in the example of Fig. 12 all 

sixteen stress values, denoted/, ere uniquely determined 

by one statically determined svstem and by 15 indeterminate 

groups. R 

outboard 
f inboard 

Fig. 12 

J _ 

1 
I 
I 

0 av = 

~ 
of 

1 
/ Ar 

/ • • 

0 av y Ar 

or 
lumped areas 
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Secondlv, shearin~ stress need not be assumed to be zero 

in all trian~ular cells nd1acent tot.he boundarv, a s i t 

would ap.,on r if the lumpin17, method were followed stric t ly. 

'l'hen the structure is severed alongtrie line R - R and tl-1e 

action of the outboard part on the inboard part is considered. 

a) Anv snar or rib flange force, generatAd in the outbo1 rd 

n a rt and anpl led to the inboar•d one, is resolved in two 

comnonents, narallel to the ~irection of the inboard fl a n ~e s, 

and parallel to the flanl'.!e of "R". See Pig. 12, vectors 

F P ~ Since the moment produced by Fr is reacted out' in' r • 

bv the flhear flow of the inboard torque box, ev~dentlv a 

discontinuit:v of the flan~e stress of 11 R11 is pr e sent at t'.his 

snot. 'J'his discontinuity is fictitious and entirelv due to 

the lumpin~ n rocedure. A means for smoothin~ out the stress 

picture is indicated in Pig. 12. The moment of Fin and the 

corres ,,ond ln~ shear force are t <tken by the inboard spar. 

b) The ac t i on of the outboard trlan.~lar nanels on t he 

inboa rd structure is represented by P, the seometric sum 

of t h e piled up shear forces, as shown in Fig. 12. P is 

rep]q ced sta t ical l v bv a normal force N and a s h ear force 

s . If the nanel s h ear is de to a torque defined between 

two S")ars of the outboard part, then , by Fi~. 13, the N 

forces ~roduce an inboard spar bending moment M = T.siria, 

a n ~ the S forces, together - with the shear forces of the 

sever ed webs, produce an inboard torque T.cosa. It is 

sh0wn in t ½e Ap pendix that for a ~iven torque T, the panel 

s~oa r ~m, and the lumped spa r bendin~ moment a re given by 
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t he formulae: 
"R" 

----
"R" 

Fig. 13 

After these remarks, the static~lly d e terminate system can 

be est a blished withou~ difficulty. Theoretically all stress 

distributions balancing the applied load are equivalent in 

this res pect. In practlcal computation, however, it is 

advantageous if t he final distri~ution is not too different 

from the initial one since, otherwise, the rounding errors 

are becoming ~mportant. 

c) The statically indeterminate action is considered now. 

Fig. 14 explains the numbering system of the warping groups 

applied to cells along the boundary "R". A section made 

through t h e structure outboard and close to "R" leaves free 
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three groups of stress: 

First group consists, Fig. 15, of the normal to 

"Rn components of the flan~e forces and of the lumped panel 

action N. The ~roup generates a warping bimoment MH 

applied to the inboard part at the rib "R". 

Second group is made of a part of the panel action 

S together with the web shears ~w of the cut spars or ribs 

outboard. This is a self equilibrated system which is 

absorbed by the shear web of "Rn at this place. Since all 

webs are assumed stiff in shear this group does not penetrate 

any further inboard. 

Third group consists, Fig. 16, of the chordwise 

components of the flange forces and of ~y;hat is left of the 

oanel action S. This is also a self-equilibrated system 

which does penetrate inboa rd, however. 

In order to see what the last action amounts to, 

consider the warping groups MFY to be set on the spars of 

the inboard part. See Fig. 16. Sinoe the chordwise stress 

P.:enerated by these groups is a difference of two group 

values (divided bv the rib flange area of course), the same 

must be true of the flange stress of nnn. One should expect, 

therefore, that a combination of the redundant quantities of 

the outboard part affects the stress of this flange. Moreove~, 

if no such action were present the stress systems . of both 

parts of the structure wovld not jnfluence one another except 

by the MH groups. The necessary additional link is provided 

bv the third stress ~roup as it appears clearlv from Fig. 16. 
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Suppose that MFY21 = N.Fy22 and that all other groups are 

zero. In this case no stress exists in the rib flange acted 

upon by two n on zero groups. However, the two S forces 

remain and produce, in the case of the figure, a local exten­

sion of the "R" flan ,~e denoted (+). Apparently, the effect is 

similar to the action of a force of any group MFY shown in 

the fiRure. The resulting strain depends on the full group 

value, (not on a difference of two group values), and is 

toned down subsequently by the neighbour group MFY. 

In the general case all warping groups have different 

values. Thus the above action is conceived as a function of 

a whole set of warping groups ·affec t ing this particular grid 

p oint of "R". In the following the action is referred to as 

the redundant rib moment MR. It is shown in the Appendix 

that for cells hav i ng "n" as a diagonal the warping moment 

}'.H has the value: 

MH1 = MFu21 
ml cos(a+y2 ) + 

MPu11 
m2 cos ( a+y1 ) cosy2 cosy1 

MFy21 + MFyn (25) + - ml sina m2 sina 
cosy

2 cosy1 
Then for grid points on "R" 

( 26) 

In the above 

ml ::r hub2 
nl C: 

Ar 
hllb 2 + h 22b1 Ar + Ar 

m2 = 1 - ml n2 c: 1 - n1 
are the weicz:ht factors. 





• 

-34-

See Fi~s. 12 and 16 for definition of lumped areas. Similar 

formuls.e can be es i ablished for other cells and grid points 

of "R", bv conveniently raising the indices in conformity 

with F'iiz;. 16. 

(2~) and (26) are the transformation equations of 

redundant quantities. In order to ~rasp their true meaning, 

suppose, for simplicitv, that the part outboard of "R" is of 

constant Plate thickness with ribs and spars at right angles. 

The new svstem of reference is written u, v, instead of u, y, 

with v as a length coordinate. Dividing by h the e a u Rtions 

become: 

H ::: (Fu21+ Fun) 
cosa + (FV21+ FVll) 

sin:i 
2 2 

R = -(Fu21+ Fu22) 
sina + (F V21 + FV22) 

cosa --
2 2 

and, further with the grid gettinp; smaller and smaller: 

H = 

R = -F sina + F cosa 
U V 

One sees that the forces com" osing the warping groups of the 

first kind transform as vectors when passing from one system 

of reference to the other. This should be expected. By (19) 

of Chapter II, 3, H, R, Fu, Fv are the Southwell stress 

functions of the plate theory and their law of transformation 

should be compatible with the law of transformation of stress 

compon~nts. It can be shown, after some work, by direct 

substitution that the stress components will transform by 



-35-

the known fo1'm11lae, when passina; from one s:vstern to the other, 

only if the Southwell's stress functions transform as indi­

cated above. 

III, NUM~RICAL OPERATIONS 

1. Matrix Notation 

It is apparent from the preceding analysis that the 

numerical work, for any structure of practical significance, 

is quite extensive. A good digital computer is required in 

order to di~est the quantity of data. However, the prepara­

tion of data for the computer is a difficult task, sinc e all 

material fed into the computer must be error free and since 

the automatic process, when once started, has to be carried 

ou.t to t he end. Therefore all preparation of data, their 

checkin~, and presentation must be done as neatly and orderly 

as possible. The indispensable mathematical tool which 

make~ the whole work feasible is the matrix calculus and 

technique. At this place, a few particulars of the adopted 

nota tfon are explained as there are differences, and preler­

ences, among dif'ferent authors. 

In this paper matrices are den .; ted by letters, 

mostly ea.pi tal ones, with appended indices as for instance 

Sia, Zab, 1''p. 'l'hree groups of indices are introduced: 

1) Load point indices 

a, b, c = 1, 2, 3, . 

to indicate position where a load is applied or where deflec­

tion is measured. A symbol, su.ch as Qa denotes a load applied 

to the structure, and Za denotes a deflection at the load 



() 

( ) 

• 

·· - . - .-; ,.. . .,. 

- 36-

point a. 

2) Stress section indices 

1, k, 1 1:: 1, 2, 3, .. . ... . 

indicate cross sections or spots where stress is, or is 

proposed to be, determined. Thus s1 denotes all stress 

values such as as, or, ~mat spar rib intersections, or at 

panels. In particular g1 denotes the statically determinate 

part or the stress distribution. 

3) Redundant group 1nd1oea 

P, q, r • 1, 2, 3, . . . . . . .• 

Thus FP denotes any redundant quantltv or group. 

Indices are interchangeable within each group, e.1. 

1 can always be written for k and k for 1. However, 

one is not allowed to use, say a p letter in order to denote 

a lo&d point. ~, Si, and . Fp are vectors in the matrix 

language. From the point ot view of mechanical computation 

the distinction between a column and a row vector is immater­

ial, since each one ls represented by a similar deck of punched 

cards or by a similar sequence or marks on a tape. 

At any cross section 1 stress is a linear function 
&, 

of an applied load and of a redundant load. This relationship 

ls written in the adopted notation 

(27) 

where Tia is the statically determinate stress-to-load 

matrix and K1p ls the stress-to-redundant-load matrix. A 

convention is borrowed from the tensor calculus: a repeti-
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tion of an ihdex means that a summation is carried out 

through all . index values. A repeated index CA.n be designated 

by any letter of the same group provided the letter has not 

been used in the same term already. Interchanging indices 

or different groups, e.1.writing Tai for Tia' would conven­

tionally mean that a matrix is being transposed~) However, 

from the point of view of mechanical computation, again it 

is immaterial how a matrix is written. What matters is how 
ed 

the matrix is marked on a tape or how the punchAcards are 

shuffled. So for instance a matrix Api where i ~ 1, 2, 3, 

4, 5, pc 1, 2, 3, e.i. an array 

p 

I 

l 

i 

X 

X 

X 

___ ,_ 

X 

X 

X 

X 

X 

X 

X X 

X X 

X X 

can be marked on the tape or shuffled by the p index in 

the sequence 

p = 1 2 3 

X X X X X X X X X X X X X X X 

i = l?.345 1 2 3 4 5 1 2 3 4 5 

or by the i index in the sequence 

i = 1 2 3 4 5 

X X X X X X X X X X X X X X X 

p = 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

which of two arrangements is used depends on whether the 

matrix is a post or a prernultiplier. So for instance in a 

multiplication represented symbolically by 

*) See p.42. 
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or graphically by 
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X X X I 

. I ,i "; fJ 
-3~- : • ., 

·, 

P----

x X X X I 
X X X X II 
X X X X , 

s:: 

-
P-"'":" 

a X X X X 

l 
X X X X 
X X X X . ) 

X X X X 
X X X X 

the premultiplier is arr•riged by a row index a, and the 

,postmultiplier by a column index p. It is .entirely up to 
!. ) 

the operator how the product will emerge !fem·the machine 

and his 1udgment will depend on how he int~nds to use the ., 
I 

result, as a post- or a _prernultiplier, in ·further work. The 

rule is as follows: in any simple matrix multiplication such 

as AaiBip the matrices have to b-e arranged by indices which 

are not summation indices. for these reasons it is not impor-
r 

tant for this work whether a distinction is made between an 

original and a transposed position of a matrix. It is im­

portant, however, that any established formula presents a 

clear program of operation to the computer. 

Strain energy is computed at first for each particular 

element such as a flange, a panel, in terms of stress components, 

then a summation is carried out for the whole structure. In 

the result 

where Cik is a svmmetric square matrix of order 1. The 

above notation is satisfactory for paper work, of course. It 

,does not indicate the sequence of operations, however. The 
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(28) 

and is used as a starting expression in the work below. 

2. Stress to load matrix Sia 

In the notation of the last section, the stress 
, 

at any si~nificant. cross section is a sum of the statically 

determinate part gi = TiaQa and the redundant part: thus 

.. (29) 

On substitution in the energy expression, we obtain: 

Here, in the second term on the right hand a new index q has 

to be introduced according to the rules of operating with 

summation indices. 

When carryin17, out the indica'ted multiplications one 

has to consider that the two products, as marked above, are . 

equal. Hence the energy formula becomes 

V (30) 

With the notation 

= = D pq 

the enerRY formula is written 

V = 
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~ is the staticallv determinate portion of strain energy, 

not required at the present time. Dpq is a Syn"metric matrix. 

By the second theorem of Castigliano 

av/oF q -= F D p pq = 0 (31) 

Here the index q denotes the equation and the index p 
-1 the unknown in the equation. Let Dpq be a matrix inverse 

to Dpq • Then the solution of the above set is given by 

-1 0 
(32) F I: -D Hqksk p pq 

Thus 
o · -1 0 

Si = Si - KipDpq HqkSk 

or, introducidii: the Kronecker delta 6ik' 

Si s:: ( 6ik -
-1 0 

Kip Dpq Hqk) Sk 

Since ~k = Tka~ • the stress-to-load relationship becomes 

Si "" 3 iaQa (33) 

where Sia is the stress-to-load matrix given by the opera­

tional sequence 

s "" ia 

Note that aik = 1, when i = k, otherwise 6ik = O 

3. Displaoement-to-load matrix Zab 

(33a) 

Since the stresses are known in terms of the applied 

loads, it is Possible to express strain energy in terms of 

these loads. On substitution, 



Expression 

is the displacement-to-load matrix and strain energy ls 

written in terms or the applied loads: 

(34) 

By the flrat theorem or Cast1gliano, the displacement at any 

point a is given by 

(35) 

When working with an automatic digital computer, 

determination of Zab 1s s ,traiglitforwa.ra~'. Another expression 

for Zab is derived now which has the advantage of being '' a 

little more time saving and of permitting some numerical 

check on operations performed. 

From the strain energy written in the form 

V - ½g1C1k¾ + FpHpk§k + ½F D F p pq q 

subtract, in view p-! equation (27) 

0 

½Fp(HpkSk + DpqFq) a 0 

Thus 

(36) 

Remembering Hpk = KP1c1k the above la brought to the form 
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V 

Beoause of the symmetry of c1k 

Hence 

(37) 

is the alternatice form of the displacement-to-load matrix. 

Apparently this form saves the cost of rearranging Sia to 

Sal and provides an important check, since the matrix Zab 

must be symmetric. 

to p.3'7 

4) It follows that rows and columns of non symmetric square 

matrices should not be desip;nated bv letters belonging to 

the same group. Th:l.s restriction is quite meaningless and 

has not been observed in the text. See ( 33a.) matrix 

Kip 
-1 

Dpq Hqk• 
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IV NUJIERieAL EXAJIPLES. 

The methods of analysis presented above were 

checked on several numerical examples and compared with the 

test results. The considered problems subdivide into three 

categories: 
. 

1. Small illustrative problems analized by means of table 

computers. 

2. A pilot problem solved on a standard I.B.M. punchcard 

machine. 

3. A large scale computation. 

1) Small Problems 

Problems of this category were designed tn order to 

check how the method ,behaves in practive and h ow it accounts 

for the wing sweep back, for torsional warping, and for shea~ 

lag effects. The computati9ns were kept as simple as possible. 

Some results are quoted. 

Fig. 12 represents one straight and one swept wing 

plate. There are four spars and three ribs. The fourth rib 

is rigid and is part of the support where all four spars are 

clamped. Computation involves 

Stress points: On spars 12 
On ribs 6 
On panels 9 

Hence i a: 27 

Redundant warping p:roups p == 15 

Terms containing Poisson's ratio were omitted in the energy 

formula. The curves a, b, c represent the spar flange stress 

at the clamped root. In particular: 
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a) Curve (a) represents spar stress due to the bending 

effect of two loads Q/2 applied at the corners of the box 

as shown in Fip;. 17, The bending stress is not the same for 

all spars on account of the flexibility of the ribs, in 

particular of the end rib where the load is applied. 

b) Curve (b) represents spar bending stress due to torsion 

applied by two loads + 
- Q/2 at the corners of the box, 

is the torsional warping stress, 
This 

c) Curve (c) represents spar stress due to the bending 

effect of two loads Q/2 applied at the corners of the 30 -' 

swept box. An appreciable stress concentration exists at the 

root or the rear spar, Since the statically determinate part 

of stress distribution is the same as in the case of the curve 

(a), it follows that the stress concentration is detected only 

because the term siny Txy<ox+ oy) has been introduced in the 
enercy formula, 

Example of Pigure 1 has been selected in order to 

investi~ate the shear lag effect, If lumpin~ is done by 

existing webs, the analysis. cannot be vary accurate. Only 

four stress points can be introduced, two on spars and two on 

panels, and only one redundant warpin~ group on the internal 

web, However, a quite fair stress distribution is obtained 

if nine planar groups are considered. In this case, bv 

considering structural symmetry, we have 

stress points: 
On spars, real and fictitious, 15 
On ribs, " 12 
On panels 12 

Hence i r:: 39 
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Then redundant warping groups 
redundant planar groups 

Hence p 

1 
9 

= 10 

The graph shows the distribution of ox on three cross section, 

1-1, 2-2, 3-3. Evidently, the c_omouted flan~e stress of a 

certain spar is not necessarily equal to the value of the 

continuous distribution at this place. The correction has 

been introduced at the load carrying spar only. 

It can be concluded that methods of analysis expounded 

in this paper agree, at least qualitatively, with what is 

known of the subject from other sources, as it concerns 

torsional warping, sweep ~ack, and shear lag. One drawback 

of the methods is apparent, however. If, t~re·are too few 

stress points taken into account on each cross section, it 
. . 

may be difficult to draw the ~curve representing the conthlu-

ous distribution and the difficulty is greates~ at the border 

spars and ribs. Moreover, the resultant of a continuous 

distribution for each flange is displaced in reference to the 

position of the lumped flange force used in the analysis and 

the error depends on the slope of the stress curve. It would 

be preferable to have the stress distribution given from the 

beginning by a c~rve instead of by discrete points. Since a 

method of this kind still awaits to be discovered, the accuracy 

of computation can be increased only at the cost of increasing 

the number of stress points. 

2. Pilot Problem 

It has been anticipated from the beginning that any 
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large scale analysis of a multi spar/rib structure is quite 

prep osterous without a hi~h speed di~ital computer. In 

order to check the method as to its applicability for auto­

matic computation a problem indicated in fiP,. 19 was devised. 

The sketch represents, say, a dorsal fin plate built in 

elastically at the root. The loadin~ consists of airloads 

apolied perpendicularly to the plate at each spar/rib inter­

section and of moments and torques along the boundary. Their 

distribution may be given by preliminary considerations. The 

elastic supnort consists of a multi spar/plate so that each 

spar/rib connection at the root can rotate around the line 

F - F. The constrainin~ moments may h ave any direction in 

the middle plane of the fin plate. Exact determination of 

the foundation stiffness being a problem for itself, for 

economy of time, the followin~ approximate structure has been 

substituted. 

It is assumed that the fin structure is extended so 

that quadrilateral cells are substituted for triangular ones. 

The support itself consists of four beams as shown in fig.20 

and of inextensible links denoted by heavy lines. After the 

fin structure is connected with the support, the statically 

determinate stress is, for the most oart, a simple beam 

bendin~ as i~dicated in the text and is absorbed by the 

support as convenient. In order to make the support stress 

independent from the choice of the statically determinate 

system, it is assumed that six redundant warpin~ groups act 

throu~h faces, or webs, as marked previouslv by heavy lines. 



r 

F 

} 

} 

Airloads 

//// J' l /' ! ,'/I·' I/ I I 

Redundant groups 
r~presenting support 

Bending moment 

Torque 

Fig. 19 

Plg. 20 

These groups are connected with the support beams by means of 

the inextensible links. Thus one vector moment of each 

redunda~t group is displaced parallel to itself in the direc­

tion of the dotted arrow and resolved in two components, one 
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producin~ a beam bending, the other bein~ assumed of no 

effect on deformation of the root rib. or of the support. 

The problem, when simplified as indicated above, 

involves: 

Stress p oints: 

spars 22 
ribs 15 
panels 15 
support beame 4 

Thus i, k = 56 

Redundancies: 

Internal webs 21 • 
support 6 

Thus p, q = 27 

Load points: 

air loads 18 
bendin~ moments 4 
torques 3 

Thus a, b IC 25 

The computation was started with three matrices 

and in the result matrices were obtained 

All work proceeded smoothly and was performed in one hundred 

hours of machine time. For some practical loading conditions 

the following results were obtained: 
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3. Large Scale Problem 
[i.· 

The success of the Pilot Computation has p~omut-

ed the decision to proceed with a lar~e scale analysis. The 

considered structure is shown in Fig. 25. It consists ot a 

swept and tapered wing plate supported by a fuselage frame 

work. Since the analysis has to include symmetric loading 

cases onl v, a rigid support is assumed a.t four points indicated 

by letters RS in the figure. Interaction with the fuselage 

provides an additional elastic support at points denoted ES. 

On the understanding that the structure ls airborne, the 

applied loads are supposed to be balanced always, so that the 

supporting rigid reactions are either nil or equal to the 

local loads acting in these places. Then the rigid support 

provides solely a datum for measuring displacements. 

72 independent loads are chosen at intersections of 

spars with rtbs and in some points outside the plate so as 

to represent the neglected, or cut off, portions of the 

structure. In a few instances the actual loads, as for 

example engine loads or undercarriage reactions; do not 

coincide with the somewhat artificial layout of the ref,~J:'.,.~nce 

grid; it is understood therefore that local problems may 

appear which will be solved by cutting off part~ of the 

assumed structure and by substituting the real one instead 

while the stress distribution at the cut will be taken from 

the main analysis. 

The wing plate is 72 times redundant with MF 

warpin~ ~roups placed on all internal walls. The connection 
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with the fusela~e introduces three more redundant groups of 

the type MG and one redundant shearforce as indicated in 

Fig, 25. Alto~ether the structure is 76 times redundant. 

Stress intensity is defined on 173 cross sections, 

which include all non zero spar and flange stresses and skin 

panel shears, The number of stress sections considered in 

the analysis is really much lar~er since many elements have 

been analized separately, and only the summaries have been 

incorporated in the main analysis, 

Preparation of the numerical material took about 45 

man-weeks, The followin~ matrices were established: 

Cik Matrix of 29,929 elements, 1,040 non zeros, 

Kip Matrix of 13,148 elements, 370 non zeros, 

Tia Matrix of 12,802 elements, 1,568 non zercs . 
It should be noted that the above time i'igure did not include 

all preliminary work, i.e. assigning the.proper structural 

cross sections, computing of effective widths and of elastic 

moduli, This part of the work was done by the Wing Groups of 

the Stress Office, who also established, from available data, 
m 

a load Matrix Qa composed of 72 columns of m elements 

representin~ airload and structural weiv,ht, 

The computation contract was placed with the Inter­

national Business Machines Company Ltd. in Toronto, Canada, 

and executed by the Scientific Computin~ Service in the New 

York Headquaters of the Company. Althou~h all previous work 

has indicated that the undertakin~ is sound and reasonable, 

a ~reat deal of uncertainty and risk was still involved. 
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The following questions could not be answered before the 

numbers were fed into the computer: 

1) Is the KpiCikKkq well conditioned for inversion!. 

2) Since any computed stress intensity is a difference of 

at least two large numbers representing groups, is it 

not likelv that an overflow may occur or too many signi­

ficant fi~res may be lost? 

3) How many numerical errors are still in the basic matrices 

in spite of all checking and cross, checking? 

4) Are the computation facilities reliable enough to allow 
' the handling of matrices of the order 173 x 173. 

The computation was brought to a successful end. 

The following results were obtained: 

1) Stress to Unit Load Matrix s1a of 12,802 elements; 

2) Displacement to Unit Load Matrix Zab of ~,184 elements; 
m 

3) Si Matrix indicating Str~ss at 173 Cross Sections in m 

Loading Cases. 
m 

4) Za Matrix indicating Displacement at 72 Loading Points 
.. . 

in m Loa.d ing Cases . 

Fi~res 26, 27, 28, show a few interesting plots for the 

loading case corresponding to a large wing bending. Since 

at the present tim_1;1, ·· no comparison with experimental data is 

possible and no other exact comoutation exists, only a general 

examination of the results is presented! 

1) On the evidence of the supplied arithmetic checks and of 

the continuity of the plotted curves, it is. assumed that tne 

computation is arithmetically correct. The check~ were 
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provided by: 

Symmetry of the Dpq Matrix, 

Ma~nitude of the inversion error 

S:vmmetry of the Zab Matrix. 

2) That the computation gives an adequate picture of the 

stress and displacement distribution can be seen from the 

following analysis: 

a) The chordwise bending at the centre line of the airplane 

is as expected. Pi~. 27. 

. 
b) There is no chordwise bendin~ further outQoard, but this 

is explained by the interference of the tip part. A correct 

twist of the win~ is indicated, however. 

c) At the aircraft centre line the front spar is lifted up 

by the redundant Rhear force shown in Pi~.25. This is indi­

cated -by the bending cur-ves, Fi p; .26, and by reduction of 

bendin~ stress, Fi~. 28 . 

d) The maximum of the spar stress is shifted to tJe rear as 

expected. Ji'i i:; . 28 . 

'fhe computatlon gives no answer, however, as to the shearlag 

situation between the main spars and in this respect any 

experimental evidence can be quite valuable. 
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V APPENDIX 

1. Equations of equilibrium for stress 
components in trapezoidal coordinates. 

2. Weighted averages for trapezoidal panels. 

3. Analysis of trapezoidal cells. 

4. Oblique boundary condition. 

5. A superfluous MG group. 

6. Partitioning the problem. 
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1. EQUATIONS of EQUILIBRIUM for stress compon ents in 

trapezoidal coordinates. 

The trapei~idal stress components we re define d in 

Chap. II, 2. F'orces are now pro.1ected on the x, i. e . u, 

axis, a nd on the y axis. 

'tuy(u
2 

- u
1

)(tany
2 

- tany
1

) 

'\ 
\ 

\ 

y 

! 
_________ ._J_. ___ ---· 

I 

ul 

Fig. 29 .. 
Pro.1ecting forces on the x axis 
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+-r (u - u )cosy /cosy -

l 
11 Y2 2 1 2 2 

-"t ( u - u
1

)cosy /cosy uyl 2 1 1 
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u 
2 

t -- yr" 0 u 

I 't 
uy 

x , u 

yields in t he l imit 

o(uo\l.) du dy 

du cos y 

<huy 
du dy 
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c) Evalution of [a2 ] 

The integral to be computed is 

(13a) 

where t• = te.ny 
'( 2 / 

--------- -- -
--- 2 
(CJ ] 22 

2 
[o Jll 

-----

x. u ------------------+----- ------ -· -- - ------------ ---

2 

Fig. :n 
t . 

2 2 2 
Let [o ]ik denote the value of (moos y - sin y)arcrs at the 

corner 1, k of the panel, see Fig.27, and let us assume as 

an interpolation formula 

+ 
• u u - ul t" - t" ulu2 Co2 ] _g 1 
·- 22ul u2- ul (- t! u2 2 1 

+ + 
2 U2 U - Ul tf2- tt UlU2 

[a ) -
~2- t" ~ 2lul u2- ul 1 

where the factor u1u2/u2 accounte for the variability of 0
8 

along the spar. After the inte~ration is performed and the 

logarithmic terms are developed in series the following formula 

results 

+ 
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' 3u2 
[021 = 2 2 ) ([o .Ji1 _-+ [o 112 )(1 + 

av 2(u1 +u2 ) 

21 2 3u1 
) ) + ([o 21 + [o 122 )( 1 

2(u + u 

(13b) 

Note that in the case of rectan~lar panel 

d) Evaluation of [o~1 

The integral to be computed is 

(14a) 

Let [o~lik _denote the value of tany(o
8

+ or>~uy at the corner 

1, k of the panel. Assume that the interpolation formula for 

[o~] is the same as for [o2 1 except that the factor u1u 2/u2 

is squared to account for the variabilitv of as and ~uy' 

composing the major part of the integrand. Then the following 

formula is obtained 

a: l½t ( [ 0~ 111 :t [ o-:t J 12) t u2 ( [o~ l 21 t 
2(u1 + u 2 ) 

In the case of a rectangular panel 

. . . . . ) 

3. ANALYSIS or TRAPEZOIDAL CELLS 

Consider a cell represented in plan view by Fig,32. 

Since the skin surface ls a plane, the following holds: 

( 14b) 
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It is assumed that the .above ratios are very small quantities 

so that there is no need to distinguish between the panel 

and its projection as it concerns lengths 

shearing stress of the panel is ~iven by 

this section -r lb/in.). 

and angles. The 
. xlx2 

't = -r -- (in 
_m x2 

• When the loadin~ is a torque T, one obtains by the 

well known formula 

'tl t: 't X /x s: T 
m 2 1 (h12+ h11)b1 

't :e T 
(23) -m 

fill b2 + h22bl 
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and C 

is the length of the diagonal. One obtains 

V = 
2 

h22 
~ a-­

m X 
2 

R
2 

= ~ b sina tan(a + y) 
m 1 2 

::: ~ h 
m 22 

On substitution the above proposition is demonstrated. 

A loading by redundant groups is considered now. 

In Chap. II, 3, the redundant interaction of any two adjacent 

cells was defined as a group of four forces applied perpendi­

cularly to the common face or wall a.nd in four corners of it. 

t 

MF 

--
Fig. 33 

At this point, a sli~htly different definition is introduced 

, which is equivalent to the former one for all internal walls, 

except where the spar or rib direction is changed. 

u2 
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Assume that the flanges y = co111Jt .. are extend-.. 
· ea up to their intersection point at the origin. Thus two 

beams are formed, a y2-beam and a y
1

-beam. Apply~ down 

force F to the y2-beam and an up F force to the y
1

-beam. 

The flange forces s12 and s
11 

are given at once, and it is 

apparent that the panel shear ~m can be obtained by consider­

ing the cell twisted by two couples of forces Q as indicated 

in Fig.33. The relation between the force F and the group 

bimoment is 

See Fig.34. 

Group MFu 
2 

Apply first a negative group MFui• Then transmit 

the flange forces from the face 

indicated in Fig. 34, 

Group MFUl 

Negative group MF 

"' u ~ ,,,....., 

__,,,.. 

u1 to the face 

\ 
\ 

Group ·MF 
u2 

---
, __ ~----

Fig. 34 
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The relation between the force F and the group bimoment is 

• 
Groups :V.Fyl and MB'y

2 
. These groups should be considered as 

generated by torques having their vectors perpendicular to 

the faces u = canst. The relation between the acting torque 

and the group bimoment is for the ~roup 1 and 2 respectively, 

MFyl' 

Then the following results are obtained: 

= 
MFu2b 1- MFu1b 2+ MFy2a 2- MFy1a 1 

a(hllb2+ h22bl) 

MFu1 MF'u2 s :: 822 = 12 h12cosy2 
h 22cosy2 

spars 

8
11 

:: - MF'u1 
821 = 

MF'u2 

hll cosy1 h
21

cosy
1 

R = -
MFY2 

R :: 
MFY2 

12 ~12cosy2 22 h22COSY2 
ribs 

Rll :: - MF'yl 
R21 :: 

MFyl 

~l OOl'IYl h 21cosy1 

4. OBLIQUE BOUNDARY CONDITION-

(15) 

(16) 

( 17) 

Consider a cell supporting four redundant warping 

groups. A cut made along the diagonal, Fig.35, removes the 

right hand side of the cell together with two complete 

warping groups. Since the groups are self equilibrated, 

the stress system acting through the cross-section has no 

resultant. It produces, howeve~, a disto·rsion of the inboard 
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: 
structure in a ttv-ee fold way, see Main Text: 

I) Components normal to the cross section, of the cut flange 

forces and of the panel action, generate a bimoment MH, 

This constitutes a warping group of the first kind applied 

to the next cell inboard. In particular: 

at the point (2) the warping moment ls 

MH2 = - M2 + Norm.components of MFY
2

, MFu
2

, 

at the point (1) the warping moment ls 

M
1 

+ Norm.components of MP , MFu . 
Yl 1 

In the above, M2 and M1 stand for the lumped panel action 

due to ~m; the corresponding formulae have been derived in 

section 3 of this chapter, see (24) and Fi~. 32. When 

written in full, the above expressions become: 

= -

MF 
- ___!gm slna 

oosy2 2 

MF'u2 
-- m

1
cos(a+y

2
) 

cosy
2 

MF __rg_ m slna 
COs"(

2 
1 

MF 
+ _..!! m slna 

coey1 
2 

MF'u1 
- -- m cos(a+y) 

cosy 1 1 
1 

MFn 
- -- m slna 

cosr1 1 

l{,.P 
+ _.r,g slna 

cosy
2 

MFu1 
+ -- cos(a+y ) 

C08"(l 1 

MF 
+ __!! slna 

cosr1 

Thus MH2 = MH1 = MH and the existence of the bimoment ls 

demonstrated. (25) 

2) Shear forces of the cut webs (spar and rib), expressed 

by the terms such as ~wh22 , together with a portion of the 

diagonal shear force S produce a distorslon of the cross 

section. As a rule, this action will be stopped by a rib 
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belonging to the "R" rib. Since, as it concerns this work, 

MH2 
, , I; 
tl 't h22 m 

~ -
Mr2 ,.. 

r,2 

~y2 . 
cosy2 'l 

/ 

MFu2 

cosy
2 

II 
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- -·-- -- -

------,... 

I 
Sh Mrl .... 

~ ----

/ Ml 

't 

~

MF m ul 

_ " ~ cosy1 

yl 

~. y 

cosy
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2 

Fig. 35 

1) Warping Bimoment 

2) Shearing Stress 
~ "R" 

3) Bending of "R" 

M, M represent 
L6mpe~ panel action 

MF· • represent cut 
cosy. flange action. 

all . webs are assumed stiff, in shear, the above action cannot 

be followed any further. 

3) Components parallel to the cross section of the cut flange 

forces, produce a bending of the "R" rib. This is described 

by two bending moments: Mr
2 

made of S-componenta of MFu
2 

and 

MFy2 , Kz,1 made of S-components of MFu
1 

and MFYl' each of them 

being equilibrated by a portion of the moment Sh. Fig.35. 

These moments generate stresses in the structure inboard as 

explained in the main text, Chap. II, 6. Thus the stress 

intensity at a particular 12;r!d point of "R" can be taken as an 

average of the action of the four warping ~roups. (26) 
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n. A SUPERFLUOUS MG GROUP 

Consider a box as shown in fo'ig: .36. Let the full 

lines represent the real webs and dotted lines the fictitious 

ones. All skin material is lumped accordin~lY• The effective 

flange oroes section for any spar, real- or f1ct1 tioue, is 

equal to a x t. It will be shown subsequently: 

ProvidinR that the MF warping groups are set on four 

internal webs, and the MG trimoment p;roups at all 

intersections of fictitious webs (wi'th real webs and 

with other fictitious webs running at right anglee), 

no · trimoment MG should be set at the intersection of 
... 

real webs at the centre of the box. 

In other words, the MG
00 

group is superfluous. 
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I a 
4 I ,,..i.. I l -i- I 

T ~ i 
., __ -+-

I ''{ • \ I 

3 
I : \, I +- I '+ --4--- .L + _ _.,__ . -r 

~ \'-

' '' 

-+ 
I \ 

2 -i. --..--- ·+ -w+- -- f- ·· -+ 
I I -

1 .....L _J... ·+ -+ -, -+ ----r-- " t-".' 0 I I 

0 ' '----------- ' . 
--'.:. 

-1 + + I + + -t- -. (4) -t- ~ --r - -! 

~2 -+- + + ' --i-- -i -+ ·-+--+-
i I ( 3) 

-3 -t + -+- l I _.., 
t 1 · . ,; - .. 1" 

' • 
-t- -+ -f -t- + I ~ - i._ •.1_ • ;·,,. -4 ·t ·· "" ,, . 

-5 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

----1·----

Fig. 36 
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Assume, for the sake of simplicity, that the box is of con­

stant depth h. There are 6 real webs, and 16 fictitious 

webs in the fii;nire where, also, the numberin~ system is 

explained. Thus 

i 
-n < <n (n = 5 in the figure) 

k 

Assume that the stress system of the upper surface is 

given by: 

i negative i positive . . 
[ 

~(n 
+ i)(n - k), :: G{n - i) (n - k), k positive 

:: . Gik 
G(n +i)(n+k),· G(n - i)(n+k), k negative 

. 
where G is a constant. Stress system of the lower surface 

is e oual a nd of opposite sign. 

By Chap. II, 4, the flange stress at a cross section 

x = ai i s known. See equation {21). 

At ( 1) o == G{n - i)[-(n - -n + 1) - 2(n - k) - (n - k - 1))/at 
X 

. . 
At (2) o == G(n - i)[-(n - n + 1) + 0)/at 

X = - G(n - i)/at 

. . 
At ( 3) 0 = G{n - i)[-(n - 1) + 2n - (n - 1) ]/at :: 2G(n -X 

. 
At (4) 't' = G( (n - 1) (n - k) + (n - i 1) {n - k - 1) -xy 

- (n - i -l)(n-k) - (n - i)(n - k - 1) ]/at 

Similar expressions can be obtained for t he o stress at 
y 

any cross section y = ak. 

On the other hand, consider a simple Airy ~roup 

G = nG 

i)/at 

= 
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within the assembly of Fig. 3q. 

( 2 )_ 

-- _ Lumped flange area G 

i j 
i - , 

Lt/n 

.... --·--
-· (4) 

/ X 

( 3) 
L----! 

Fig. 37 

This group produces the following stress distribution: 

At ( 1) ox = 0 by definition. 

. . 
At ( 2 ) ox = - nG(l - x/L)/at equivalent -G(n - i)/at 

. . 
At ( 3) ox = 2nG(l - x/L)/at " 2G(n - i)/at 

. . 
At (4) 't e nG/Lt " G/at 

xy 

As one can see the distributions Gik and G are identical. 

It appears therefore that the stress corresponding 

to the trimornent MG
00 

is a difference of two stress distri­

butions. One is due to . 
MG = nGh 

the other is due to the trimoment distribution . 
MGik = Gii(n - i)(n - k) etc . 

without the term i = k = o. Hence MG
00 

is not an independ­

ent variable. In the course of computation MG
00 

is 
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represented by four warping groups Ml<', set on four internal 

webs, as a. pa.rt of them, and similarlv MGik is a part of 

the ~ene r al trimoment distribution as resultin~ from the 

Minimum Energy Principle . 
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6. PARTITIONING the PROBLEM 

When analysing a multi redundant structure it is some­

times expedient to subdivide the task into a few small~r 

problems as can be seen on the following example. Suppose 

that the main structure consists ot three parts connected 

in a staticall~ determinate manner, each part be!n~ 10 times 

redundant. If the whole structure were an~lysed in 0ne block 

the number of punch-oards used in inversion of the elastic 

matrix is about 27,ooo; but if each part is treated separately 

the number of cards is only 3,ooo. As a rule partitioning ot 

a problem should be undertaken only if the redundant link is 

weak and if the number of partial problems is not large, since 

with modern high speed digital computers, as it concerns time 

spent on computation, the size of matrices matters less than 

the inconvenience of imput and output of data. Therefore, it 

partitioning involves frequent reading out of data and 

extensive handling of magnetic tape~, it may be faster to 

proceed without partitioning. On the other hand, partition-

ing may be advantageous tr some parts of the structure are 

expected to ohan~e or to occur in variants. Then, incorporation 

or changes may b~ done with little cost. 

In establishing partition boundaries and redundancies, it 

is necessary to distinguish between a simply connec t ed 

structure and a multiply connected one. Suppose that the 

structure.is built up in the following way: There is a 

structural part, the base connected with the foundati on . 

This part supports other parts which carry other parts, ano so 

on. If no other connections exist between parts as those 
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explained, the structure resembles a tree and is called a 

simply connected redundant structure. In this caae, the 

connections, of the base with the foundation, of the parts 

with each other, although ·st~tically indeterminate in general, 

are such that the corresponding redundancies affect directly 

two adjacent parts only. These redundancies are denoted here 

as border redundancies, in opposition to the internal x-edun­

danciea whioh are supposed t ·o be eliminated in the first 

step of computation. In a simply connected structure there 

is .never any doubt which load path leads to the foundation. 

It the structure possesses other connections, as if 

aome branches of a tree were grown together, it is called a 

multiply connected structure. In this case, redundancies 

exist which affect several parts forming a closed circuit. 

Subsequently they are referred to as closed circuit redun­

dancies. In a multiply connected structure, it is, in general, 

ambiguous which load path leads to the foundation. Some 

information on stress systems in multi connected bodies can 

be obtained from s. Timoahenko's Theory of Elasticity, par.39, 

p. 120, (Ed. 1951). 

There 1& no difficulty in establishing rules of partition­

ing. A portion of the structure is cut out and the statically 

determinate reactions and redundancies at the cuts are defined. 

Then the . loads are introduced: 

a) The air and·inertial loads applied to the part in question. 

b) The statically,, determinate action of the attached 

~ structure and the corresponding border redundancies if any. 

,j 
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o) In a multiply connected structure, the closed circuit 

redundancies. 

All these items are summarized as loads in general and the 

problem la solved for stress and displacement in the usual 

manner as indicated in Chapter III. In doing so the follow­

ing matrices are obtained for any structural part: 

stress to unit load 

displacement to unit load 

Note that in the above the statically determinate reactions 

of a part do not appear as loads acting on the part. They 

appear as loads acting on the supporting structure; in other 

words, on parts situated farther down on the path to the 

foundation . 

In order to combine the partial problems for final 

solution, a unified index and notation ·system is introduced 

for the whole structure. Accordingly: 

A) Loads ~ ot partial problems (acting loads, border and 

closed circuit redundancies) are denoted as fictitious 

stresses su; index system u, v. 

B) These loads are expressed in terms of the remaining 

redundancies FP by means of a matrix ~P; index 

system p, q, and by means of 

C) the loads applied to the whole structure. These loads 

are denoted ~; index 1ystem a, b. Here the indices 

a, b, have acquired a new meening and run through all 

applied load numbers obtained when all partial problems 

are put together. The matrix relation is Tua• 

I 
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D) The overall strain energy matrix is built up consequently 
< 

l 
of all partial matrices zab and is denoted 0uv Thus 

the procedure of Chapter III can be applied, with index 

u written for 1, and two new matrioe"s can be obtained: 

1) S expressing all loads and all redundancies, ua 
treated as loads in partial problems, in terms of 

acting air and inertia loads. 

2) Z presenting the overall displacement matrix. 
UV 

The overall stress to unit 1oad matrix is evidently 

where the ·1ndex i runs through all stress points of the 
I 

structure. The computations involved in the overall problem 

are rather simple due to the small numbers of unknowns and to 

the fact that the matrix Tua is for the most part a unit matrix. 




