QC Auro CF105 E-2 & 3

UNCLASSIFIED Report No. E-2

"Estimated Power Loads for CF105 Aircraft"

"Estimated Power Loads for CF105 Aircraft Using Sparrow Missiles"

FILE IN VAULT

J. H. PARKIN BRANCH

MAY 29 1995

ANNEXE J. H. PARKIN CNRC - ICIST

Report # E-2

UNCLASSIFIED

Classification cancelled/changed to (date)
by outhority of the change of

UNCLASSIFIED

AVRO AIRCRAFT LIMITED MALTON, ONTARIO

Aircraft CF-105

Report No. E-2
No. of Sheets 5
Issue 2

ESTIMATED POWER LOADS

FOR

CF-105 AIRCRAFT

POWER LOADS

1. Primary Electrical Service Loads - Essential for Flight

UNCLASSIFIED

SERVICE	LOADS
Oxygen System Cockpit Lights Artificial Horizon Fuel Capacitance Air Conditioning Pressure Ratio Indicator	13.3 VA 403.7 VA 67.0 VA 13.3 VA 30.6 VA 25.0 VA
	552.3 VA
R/H Transformer-Rectifier L/H Transformer-Rectifier	2670.0 VA 2670.0 VA
TOTAL	5892.3 VA

1.1 D.C. loads - breakdown of transformer - rectifier loads

	CONTIN- UOUS	INTERMITT- ENT	INSTAN- TANEOUS	SHORT TIME
Engine Services Ignition Relight (10 Secs) U/C Actuation U/C Indication Nose Wheel Steering Fuel System Low Pressure Cocks External Tank Jettison Fire Extinguisher Fire Detection Canopy Actuation (8 secs)	.59 amps 5.96 amps .09 amps 1.18 amps	.50 amps	16.00 amps 6.00 amps 8.35 amps 19.15 amps	14.00 amps
Refuelling Fuel Capacitance Alternator Controls Hydraulic Press Warning Speed Brakes Turn & Bank Cockpit Lights Exterior Lights Ramp De-Icing (Control) Ice Detection	34.18 amps .32 amps 5.74 amps .74 amps .6 amps .2 amps 3.66 amps 6.94 amps 16.01 amps	32.14 amps	34.00 amps	
Air Conditioning Landing Lights Ice Detection (Ramps & Radome)	2.50 amps 20.00 amps	18.75 amps	3.50 amps	

1.1 (Cont'd)

In terms of A.C. load an arbitrary requirement of 125 amps D.C. continuous (Based on the premise that all loads will not be on simultaneously.) is equivalent to 5340 VA which is divided between the two TRUs as shown in Para. 1.0.

1.2 On failure of one TRU part of the D.C. load (para. 2.0) is shed leaving approximately 100 amps on the remaining unit, due to the increased efficiency of the unit when loaded to its full rating this is equivalent to 4200 VA.

2.0 D.C. LOADS (SHEDDING)

This load is shed on failure of one TRU.

	SEI	RVICE		L	DAD
Landing	&	Taxi	Lights	500	Watts

*In terms of A.C. load this equals 840 VA which is divided 420 VA on the R/H TRU and 420 VA on the L/H TRU.

3.0 PRIMARY ELECTRONIC LOADS - ESSENTIAL FOR FLIGHT

3.1 Supplied by electrics on failure of MX 1179 integrated electronics power supply unit.

	SERVICE	A.C.	D.C.
AN/ARC-52	Air To GND. I.F.F. U.H.F. Communication Interphone	270 VA 100 VA	110 Watts 220 Watts 80 Watts
Damping Misc		100 VA	100 Watts
	TOTAL	470 VA	510 Watts

^{*} In terms of A.C. load this equal 857 V.A. which is divided 428.5 VA each to the R/H and L/H T.R.U.'s.

3.2 Supplied by Electrics at all times

SERVICE	A.C.	D.C.
AN/ARN6 Inc. Remote Control Radar Homar Doppler Air Data Boom Damping (Emergency Channel) J-4 Compass	180 VA 500 VA	140 Watts - - - - -
TOTAL	1165 VA	140 Watts*

* In terms of AC load this equals 235.5 VA which is divided 118 VA each to the R/H & L/H TRU's.

4.0 WEAPONS SERVICE LOAD NOT ESSENTIAL FOR FLIGHT

SERVICE	A.C.	D.C.
Weapons System (Falcon) Accumulator Heat	400 VA 600 VA	80 Watts*
TOTAL	1000 VA	80 Watts*

* In turns of A.C. load this equals 135 VA which is divided 68 VA each to the R/H & L/H TRU's.

These loads normally fed from the Electrical System are automatically shed on failure of MX 1179 power supply.

5.0 INTAKE DUCT DE-ICING LOAD

Right Hand - 8400 V.A. Left Hand - 8400 V.A.

6.0 WINDSHIELD & CANOPY ANTI-ICING LOAD - Essential 2500 V.A.

7.0 LOAD DISTRIBUTION

7.1 Normal Flight

Dama	Das
Para.	uer.

1.0 5.0 6.0 4.0 3.2 1.0 2.0	R/H 20 KVA	Alternator	- Primary Electrical R/H Duct De-Icing Windshield De-Icing Weapons Primary Electronics (R/H(D.C. Primary TRU (D.C. Shedding	552.3 VA 8400.0 VA 2500.0 VA 1000.0 VA 1165.0 VA 2670.0 VA 420.0 VA
				16707.3 VA
5.0 1.0 2.0	L/H 20 KVA	Alternator	L/H Duct De-Icing L/H (D.C. Primary TRU (D.C. Shedding	8400.0 VA 2670.0 VA 420.0 VA
				11490.0 VA

7.2 MX1179 Failure - Both Alternators Operating

3.1 1.0 5.0 6.0 3.2 1.0 2.0 3.1	R/H 20	KVA	Alternator -	Primary Electronics Primary Electrical R/H Duct De-Icing Windshield De-Icing Primary Electronics (D.C. Primary (D.C. Shedding (Electronic DC Primary	470.0 552.3 8400.0 2500.0 1165.0 2670.0 420.0 428.5	VA VA VA VA VA	
					16605 8	77A	

	3.1	L/H	20	KVA	Alternator
--	-----	-----	----	-----	------------

5.0 1.0 2.0 3.1	1/11/20	II. W	L/H TRU	(D.C. (D.C.	uct De- Primar Sheddi tronic	ry	8400.0 2670.0 420.0 428.5	VA VA	
							11918.5	VA	-

7.3 Right Alternator Out - MX1179 & Left Alternator Normal

1.0 5.0 6.0 4.0 3.2 1.2	L/H	_	Primary Electrical L/H Duct De-Icing Wind Shield De-Icing Weapons Primary Electronics TRU - D.C. Primary	552.3 VA 8400.0 VA 2500.0 VA 1000.0 VA 1165.0 VA 4200.0 VA	
				17817.3 VA	_

7.4 Left Alternator Out - MX1179 & Right Alternator Normal

1.0	R/H -	Primary Electrical	552.3 VA
5.0		R/H Duct De-Icing	8400.0 VA
6.0		Windshield De-Icing	2500.0 VA
4.0		Weapons	1000.0 VA
3.2		Primary Electronics	1165.0 VA
1.2		TRU - D.C. Primary	4200.0 VA
			17817.3 VA

* In case of failure of 1 alternator and the loss of one TRU the remaining TRU could carry the full D.C. primary

8.0 RESERVE POWER

Available power (2 alternators) Power Load (Para 7.2)	40.0 KVA 28.5 KVA
Reserve Power	11.5 KVA
Total Electrical System Load Less fixed anti-icing load	28.5 KVA 16.8 KVA
	11.7 KVA

Therefore reserve Electrical Power = 100%

Report # E-3

AVRO AIRCRAFT LIMITED
MALTON, ONTARIO . UNCLASSIFIED

Aircraft

CF-105

Report No. E-3

No. of Sheets 7

ESTIMATED POWER LOADS

FOR

CF-105 AIRCRAFT

USING

SPARROW MISSILES

1. Primary Electrical Service Loads - Essential For Flight

SERVICE	LOADS
Oxygen System Cockpit Lights Artificial Horizon Fuel Capacitance Air Conditioning Pressure Ratio Indicator	13.3 VA 403.7 VA 67.0 VA 13.3 VA 30.0 VA 25.0 VA 552.3 VA
R/H Transformer-Rectifier L/H Transformer-Rectifier	2670.0 VA 2670.0 VA
TOTAL	5892.3 VA

1.1 D.C. loads - breakdown of transformer - rectifier loads

	CONTIN UOUS	INTERMIT- TANT	INSTANTA- NEOUS	SHORT TIME
Engine Services Ignition Relight	.59 amps	.50 amps	34.90 amps	14.00 amps
(10 Secs) U/C Actuation U/C Indication Nose Wheel Steering Fuel System Low Pressure Cocks External Tank Jettison Fire Extinguisher Fire Detection Canopy Actuation	5.96 amps .09 amps 1.18 amps	1.08 amps	16.00 amps 6.00 amps 8.35 amps 19.15 amps	17 70 amns
(8 secs) Refuelling Fuel Capacitance Alternator Controls Hydraulic Press Warning Speed Brakes Turn & Bank Cockpit Lights Exterior Lights	34.18 amps .32 amps 5.74 amps .74 amps .6 amps .2 amps 3.66 amps 6.94 amps		34.00 amps	17.72 amps
Ramp De-Icing (Control) Ice Detection Air Conditioning Landing Lights Ice Detection (Ramps & Radome)	16.01 amsp 2.50 amps 20.00 amps	32.14 amps 18.75 amps	3.50 amps	

1.1 (Cont'd)

UNCLASSIFIED

In terms of A.C. load an arbitrary requirement of 125 amps D.C. continuous (Based on the premise that all loads will not be on simultaneously.) is equivalent to 5340 VA which is divided between the two TRUs as shown in Para. 1.0.

1.2 On failure of one TRU part of the D.C. load (Para. 2.0) is shed leaving approximately 100 amps on the remaining unit, due to the increased efficiency of the unit when loaded to its full rating this is equivalent to 4200 VA.

2.0 D.C. LOADS (SHEDDING)

This load is shed on failure of one TRU.

	LOAD				
Landing	&	Taxi	Lights	500	watts

In terms of A.C. load this equals 840~VA which is divided 420~VA on the R/H TRU and 420~VA on the L/H TRU.

3.0 PRIMARY ELECTRONIC LOADS - ESSENTIAL FOR FLIGHT

3.1 Supplied by electrics on failure of MX 1179 integrated electronics power supply unit.

SERVICE	A.C.	D.C.
AN/APX-25 Air To Ground I.F.F. AN/ARC-52 U.H.F. Communication AN/AIC-10 Interphone Damping Misc	270 VA 100 VA 100 VA	110 Watts 220 Watts 80 Watts 100 Watts
TOTAL	470 VA	510 Watts*

^{*} In terms of A.C. load this equals 857 V.A. which is divided 428.5 V.A. each to the R/H & L/H TRU's.

UIII TOTAL

3.2 Supplied By Electrics At All Times

SERVICE	A.C.	D.C.
AN/ARN6 Inc. Remote Control Radar Homar Doppler Air Data Boom Damping (Emergency Channel) J-4 Compass	25 VA 180 VA 500 VA 300 VA 100 VA 60 VA	*140 Watts - - - -
TOTAL	1165 VA	140 Watts

* In terms of AC load this equals 235.5 VA which is divided 118 VA each to the R/H & L/H TRUs.

4.0 WEAPONS SERVICE LOAD NOT ESSENTIAL FOR FLIGHT

4.1 Weapons Control

SERVICE	A.C.	D.C.
Weapons control (4 Sparrow Missiles)	200 V.A.	80 Watts
Accumulator Heat	600 V.A.	
TOTAL	800 V.A.	80 Watts

4.2 Missiles

SERVICE	A.C.
Warm Up Filaments Hydraulic Heaters	3200 VA 3000 VA
Stand By Filaments, B + Hydraulic Heaters	5800 VA 3000 VA
Lock On All Missile Circuits	8800 VA
(Hydraulic Heaters Off)	9100 VI

These loads normally fed from the electrical system are automatically shed on failure of the MX 1179 power supply.

5.0 INTAKE DUCT DE-ICING LOAD

Right Hand - 8400 V.A. Left Hand - 8400 V.A.

6.0 WINDSHIELD & CANOPY ANTI-ICING LOAD - Essential 2500 V.A.

7.0 LOAD DISTRIBUTION - WEAPONS LOAD ON A.C. SHEDDING BUS

7.1 Normal Flight

This system loading provides for the firing of missiles under normal conditions, or under any failure of MX 1179 system except its power supply. No provision is made for firing missiles on failure of an aircraft alternator (see para. 8 for missile firing on alternator failure.)

PARA REF.

	1.0 5.0 6.0 3.2 1.0 2.0	R/H	20	KVA	Alternator		Primary Electrical R/H Duct De-icing Windshield De-icing Primary Electronics R/H(D.C. Primary *TUR(D.C. Shedding	552.3 8400.0 2500.0 1165.0 2670.0 420.0	VA VA VA
								15707.3	VA
	5.0 1.0 2.0 4.1 4.2	L/H	20	KVA	Alternator		L/H Duct De-icing L/H (D.C. Primary TRU (D.C. Shedding Weapons Control Missiles (Lock On)	8400.0 2670.0 420.0 800.0 9400.0	VA VA VA
34	mlan					7 -	1 1 1		100

** The existing power system will be adequate for ** 21690.0 VA this load for the ten minute max. time interval possible.

7.2 MX 1179 Power Supply Failure - Both Alternators Operating

1.0 R/H 20 KVA Alternator - Primary Electrical R/H Duct De-icing Windshield De-icing Primary Electronics 1.0 2500.0 VA 1.0 2.0 R/H (D.C. Primary 2.0 R/H (D.C. Shedding 3.1 TRU (Electronic DC Primary Primary Electronics 16605.8 VA L/H Duct De-icing 0.C. Primary 2670.0 VA 428.5 VA 470.0 VA 16605.8 VA L/H Duct De-icing 0.C. Primary 2670.0 VA 1605.8 VA L/H Duct De-icing 10.C. Primary 2670.0 VA 1605.8 VA L/H Duct De-icing 10.C. Primary 2670.0 VA 1605.8 VA L/H Duct De-icing 10.C. Primary 2670.0 VA 1605.8 VA								
2.0 L/H (D.C. Shedding 420.0 VA 3.1 TRU (Electronic DC Primary 428.5 VA	5.0 6.0 3.2 1.0 2.0 3.1	R/H 20	O KVA	R/	'H	R/H Duct De-icing Windshield De-icing Primary Electronics (D.C. Primary (D.C. Shedding (Electronic DC Primary	8400.0 2500.0 1165.0 2670.0 420.0 428.5 470.0	VA VA VA VA VA
	2.0					(D.C. Primary (D.C. Shedding	2670.0 1 420.0	VA VA VA

^{*} Lock on can last up to 10 minutes and two lock on periods may be required during a flight cycle.

7.3 Right Alternator Out - MX 1179 & Left Alternator Normal

1.0 5.0 6.0 3.2 1.2	L/H	_	Primary Electrical L/H Duct De-Icing Wind Shield De-Icing Primary Electronics TRU - D.C. Primary	552.3 VA 8400.0 VA 2500.0 VA 1165.0 VA 4200.0 VA
				16817 3 VA

7.4 Left Alternator Out - MX 1179 & Right Alternator Normal

1.0 5.0 6.0 3.2 1.2	R/H	_	Primary Electrical R/H Duct De-Icing Windshield De-Icing Primary Electronics TRU - D.C. Primary	552.3 VA 8400.0 VA 2500.0 VA 1165.0 VA 4200.0 VA
				16817.3 VA

In case of failure of l alternator and the loss of one TRU the remaining TRU could carry the full D.C. primary Load.

Available Power (2 Alternators) Power Load (7.1)	40.0 KVA 37.0 KVA
Reserve	3.0 KVA
Total Electrical System Load Fixed Anti-Icing Load	37.0 KVA 16.8 KVA
Electrical Load Less Anti-Icing	20.2 KVA

. Reserve Electrical Power = $\frac{.3}{202}$ x 100 = 14.8%

11918.5 VA

8.0 LOAD DISTRIBUTION - Weapons Load On A.C. Priority Bus

This system loading is based on missile firing under normal conditions, under any failure of MX 1179 except its power supply, or under any single aircraft alternator failure.

8.1 Normal Flight

PARA	REF.

1.0 5.0 4.2 4.2 1.0 2.0	KVA Alte		Primary Electrical R/H Duct De-Icing Windshield De-Icing Weapons Control Missiles (Lock On) Primary Electronics R/H (D.C. Primary FRU (D.C. Shedding	552.3 8400.0 2500.0 - 800.0 - 9400.0 1165.0 2670.0 420.0 25907.3	VA VA VA VA VA VA
5.0 1.0 2.0	KVA Alter	I	L/H Duct De-Icing L/H (D.C. Primary PRU (D.C. Shedding	8400.0 2670.0 420.0	VA VA

8.2 MX 1179 Power Supply Failure - Both Alternators Operating

*		R/H 20 KVA Alter	nator - Primary Electrical R/H Duct De-Icing Windshield De-Icing Primary Electronics Primary Electronics D.C. Primary D.C. Shedding Electronic D.C. Primary	2670.0 VA 420.0 VA
	5.0 1.0 2.0 3.1	L/H 20 KVA Altern	nator - L/H Duct De-Icing (D.C. Primary L/H (D.C. Shedding TRU (Electronic DC Primary	8400.0 VA 2670.0 VA 420.0 VA 428.5 VA

- (

8.3 Right Alternator Out - MX 1179 & L/H Alternator Normal

1.0	Primary Electrical	552.3 VA
5.0	L/H Duct De-Icing	8400.0 VA
6.0	Windshield De-Icing	2500.0 VA
4.1	Weapons Control	800.0 VA
4.2	*Missiles (Lock On)	9400.0 VA
3.2	Primary Electronics	1165.0 VA
1.2	TRU - D.C. Primary	4200.0 VA
		27017.3 VA

8.4 Left Alternator Out - MX 1179 & R/H Alternator Normal

1.0	Primary Electrical	552.3 VA
5.0	R/H Duct De-Icing	8400.0 VA
6.0	Windshield De-Icing	2500.0 VA
4.1	Weapons Control	800.0 VA
4.2	*Missiles (Lock On)	9400.0 VA
3.2	Primary Electronics	1165.0 VA
1.2	TRU - D.C. Primary	4200.0 VA
		27017.3 VA

Para 7.2 and 8.2

In order to fire missiles optically if MX 1179 power supply fails it would be necessary to provide an auxilary power supply which would provide D.C. plate voltage supply for the two sparrow missile auxiliaries, and high frequency A.C. (3 to 4 K.C.) for sparrow antenna slaving. This would mean a weight penalty of approx. 33 lbs. The penalty to the electrical system is not known.

NOTE: If missiles are fired after the radar or computer (or both) have failed but the MX 1179 power supply & missile auxiliaries are servicable. The load on the electrical system will be the same as para. 7.1 & 8.1.

Probable Changes Involved In Fitting a New Power System To The CF105 If The Conditions Of Para. 8 Are To Be Met.

- 1. Changes in size of nose bullet & struts.
- 2. New Alternators
- 3. New Constant Speed Drive Units
- Larger Bulkhead Connectors for Engine and firewall quick disconnects.
- 5. Increased size of wire on Power Leads.
- 6. Internal changes to Alternator Control/T.R.U. boxes.
- 7. Internal changes to Power Panel

Larger wire sizes on Power Leads Larger Limiters

Probable revision to connectors.