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SUMMARY

This report describes the method of structural analysis developed
by JoH. Argyris. A scheme of analysis is presented with the object of
making the analysis as automatic as possible, This can be achieved

once the structure has been idealized and the redundancies selected,
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INTRODUCTICON

This report is an introduction to and description of the method of

structural analysis developed by J.H. Argyris.

The matrix force method employs the concept of redundancy systems in
preferance to numerous individual redundant forces in order to facilitate
matrix preparation and checking. The laws involved are simply the laws
of statics and the Unit Load Theorem. This latter theorem expresses
kinematic relations between strains and displacements by means of statically
equivalent stresses, i.e. stresses satisfy the equilibrium conditions but
not necessarily compatibility conditions. The theorem can be derived without
recourse to strain energy or work and is valid for non-linear elastic

structures provided static equilibrium is observed,

The results that can be achieved by this method include internal stresses,
deflections in the direction of the applied loads, thermal stresses and
defiedtions and modification (ioe° cut-out or geometry change) stresses and
deflections. The procedure for analysing modifications is such that there
is no need to prepare additional matrices embracing the whole of the modified
structure. All that need be obtained are matrices pertaining to the elements
involved in the modification and these can be used in conjunction with the

matrices for the original unmedified structure.
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INTRODUCTION  (Cont'd)

This report discusses the assumptions involved and their significance
with regard to analysing a delta wing structure. The steps to be taken in
the analysis are also described. A simple problem is analysed by this
method and the results compared with those obtained by Engineers Bending

Theory.
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ASSUMPTIONS

The structure to be analysed is assumed to consist of a network of
members covered by flat sheet panels. In the case of a wing the members
would be spars and ribs. Flanges may be assumed to exist at the inter-
section of webs with cover sheets., It is assumed that the cover sheets
are flat between network lines and that they change slope only at the

network lines.

All spars and ribs must be orthogonal to one ancther and must have
little taper in plan view or elevation. If @ is the taper angle or lack
of orthogonality of:two intersecting members then it must be within a
range such that Cos 26 = 1, Sin Qév= 28, Although the large oblique angle
condition is not allowed in the analysis a reference (App. Mech. Ref.

July 1958 p2; Rech. Aero No. 23 1951 p.61) is given that might suggest

a sutiable idealization to accommodate this condition.

The need for orthogonality in intersecting members is to validate the
assumption that the shear flow in the panel is constant. This in itself
is an approximation to a parabolic shear flow distribution which is implicit
in a further assumption9 namely, that direct stresses vary linearly between
node points along the flanges. These assumptions are satisfactory provided
the network spacing is sufficiently fine. If the basic structural network

of spars and ribs is too coarse, fineness can be achieved by assuming

further network lincs drawn between the rib and spar lines, It does not
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ASSUMPTIONS (Cont‘'d)

matter that there are no flanges along these lines,

Membrane conditions are assumed for the wing skins, i.e, bending
of covers and flanges is excluded in a plane normal to the wing surface.
The thick skins of wings with low thickness chord ratios will tend to

invalidate this assumption. Poisson's Ratio effects are disregarded,

As the stresses are not known beforehand it is difficult to estimate
what effective area should Be used for the flanges, The theory was
developed on the assumption that the flange areas were known and assumed
constant between ngdal points. Web stiffness being allowed for by adding
1/6 of its area toithe flange area. However, a referenee (Airc. Eng.
March 55 P.87) is given to a method that allows for effective flange areas
especially at discontinuities and at the root where stress distribution
is difficult to estimate and Poisson's Ratioc effects were pronounced.

This refinement is known as the L-matrix technique.

It is assumed that the structure can be idealized to such an extent
that the following redundancy systems are applicable. See Figs. 41, b2,
L3, bh,

1. Rectangular stiffened panel. Type X = 1

2, Multi-web wing. Type X = 1

30 Multi-web wing. Longitudiﬁal L-boom tube., Type Y = 1

I, Maltd wekb wingo TrunsycIoc 4=boom (ube, TIype 4 = 1
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ASSUMPTIONS (Cont'd)
Diagrams are given of the arrangement of each type and of the load

in each element due to unit applied loads to the systems.
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NOTATION

b: Rectangular transformation matrix

for stresses,

structural elements,

for stresses in basic system,

R: Column matrix of applied forces.

S: Column matrix of stressing loads on structural elements.
f: Flexibility matrix of unassembled

F: PFlexibility matrix of complete structure.
r: Column matrix of displacements.

X,Y,Z: Redundancy Systems.

D= bgo foby

Do = by.fobg

Femb LD

by Rectangular transformation matrix

bj ¢ Rectangular transformation matrix

H: Column matrix of initial strains,
Coefficient of thermal expansion.
Temperature,

e

1LaOH

Xg =

Suffices
L, £, w, ¢ and s:
Modification matrices,

Mo

¢: Cut-out matrices,

relate to elements.

for stresses in redundancy system.
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Suffices (Cont'd)

Ly: Initial strain matrices.

©: Thermal or initial strain matrices.

g: Original elements of modified strueture.

h: Removed or altered elements in modified structure.
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METHOD OF ANALYSIS

The first step in the anlysis is the idealization of the structure.
The actual structure should be approximated to a network of orthogonal
lines with cover plates and webs occupying the spaces between the lines.
The network can be made sufficiently fine by assuming the existence of
additional lines,
areas, which may be zerc, but will increase the number of shear fields

and axial elements by gecmetrical subdivision.

system and the system comprising the redundancies., The basic system must
be statically determinate and should be selected in a form that permits

ease of calculation,
at the péints of application.
the loads are applied at the intersection of spars and ribs, the spars
above would form a satisfactory basic system.
cantilevers supporting the unit loads, each cantilever being independent
of the remainder,

element comprising the cantilevers can be determined easily andthe first

Out of the idealized struagture two systems are obtained; the basic

matrix b, formed.

Before the redundancy system can be derived the number of redundancies

n must be evaluated.

These additional lines need not correspond to flange

It must also be capable of supporting unit loads

For example, in a multi-spar wing where

They would be a system of

From shear and bending considerations the loads in each

This is achieved by use of the formula,




AVRO AIRCRAFT LIMITED GEN/ELASTICS/2

MALTON — ONTARIO e n
SHEET NO.
TECHNICAL DEPARTMENT
PREPARED BY DATE
IRENakT M, Bampton Feb/59
CHECKED BY DATE

METHOD OF ANALYSIS (Cont'd)

1 =9.(B+

where 9 = number
B = Number

across

N = Number

end of

Having obtained

N - &)

of bhays

of longitudinal effective flanges which are continuous
the junction i.e. are not interrupted there,

of closed cells that are stiffened by ribs at the tip

the bay. See Fig. 39.

the degree of redundancy the number and types of red-

undancy systems can be chosen. The three types of system are referred to

in the assumptions as X-, Y- and Z- systems. If there is any choice

available Y- systems are preferable because of their better conditioned

equations., Whether or not there is a choice of redundancies that can be

used will depend on the idealized form of the structure. The systems

chosen will have to represent the structure and its form may eliminate

some of the redundancy systems. For example, in a single torque tube X

and Z systems are inapplicable. In a 2-cell tube of trapezoidal section

Z- systems would not apply but X and Y systems would apply. Overlapping

may be necessary, i.e. more than one system, or type of system, relating

to a portion of the structure., In general it is best to take as many as

possible of each type of system. This reduces overlapping to a minimum.
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METHOD OF ANALYSIS (Cont'd)

Each of the described systems has been analysed for the equilibrium loads
on its elements due to the system as a whole being a unit self-equilibrating

system. This enables the redundancy matrix b; to be calculated.

The flexibility matrix,f, is formed as a result of application of the
Unit Load Theorem to the basic elements i.e. the field under constant shear
and the flange under linearly varying strain (see Appendix I). Care has
to be taken when forming flexibility matrices that where g redundancy
system overlaps an axis of symmetry, e.g. the wing centre line, only half
the relevant areas are used i.e. half the centre rib flange and web cross-

sectional area.

Each of the matrices by b; and f contain groups of submatrices.
Bach submatrix relates to a group of elements. Using Argyris notation the
groups of elements are denoted by the following suffixes: Spar flanges Lg

Rib flanges t ; Spar webs wg rib webs r and cover panels s,

Having obtained these three basic matrices the deflections and stresses

follow from the eguations s (for derivation see Appendix II)
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9 ?
Bebp s reter, = (Bypofrebip) «+ (b of b0 ) + .00 ... (1)

Do

Fo

i

0 9
Bt 8, ooy A B by el t bo) . .0 L

(] ]
= FOL + Fow + eteog (bolofLoboL) + (bowofwobow) H Glcob oo —

1]

=1 e |
by, = by - by BT D, by = bo, - bi D7 Do etco, -

Sy = bp.R Sy = bR ete.

0

]

Column matrix of the loads in the elements.

= Column matrix of the applied lcads,

=1

g
E=F -0, 0 2D

}

0

!

r = FOR‘
Column matrix of the deflection at the points of application

of the applied loads and in the direction of these loads.,

(2)
(3)
(&)

(5)

(6)
&
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MODIFICATIONS AND THERMAL DISTORTIONS

a) Cut-out or geometry changes.
Two matrices are required in addition to the matrices produced for the
basic unmodified structure., The first one bih is obtained directly
from b; and is simply the extraction of the relevant elements.
Hence if b3 = big + bih then bi are the remaining elements of the

g
original b; matrix after matrix b;. has been removed. by is a

h
corresponding extraction for the same elements from the original b
matrix and fy, is the flexibility of the elements. Whereas f used
fg o : fg =
to be (" fy) it will become ( € £ 4 afp) under modification.
Afy is then the difference in the flexibilities of the affected

elements calculated under the modified and unmodified dimensions.

For cut-out analysis Afy = o.

The following equations yield the desired results;

i, Modifications,
9

- -1
by = bebs D™ obsy . (by DToby

=1,=1
+ Afy =

/

9 =1 =-1.=-1
Fp = F + bpo(by, oD oby, * Apy - e

I

rm = FmoR S = b OR
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ii, Cut-outs.
il =] e
bC = babioD obih (bihoD obih) obh
0 =1 0 =1
Fo = F + bpe (By,sD 7 ob;, ) oy
I"c = FCOR Sc — bCOR

When additional modifications are to be made to a structure
already modified the procedure is to form matrices bih and bh
that pertain to the sum of the modifications for the current
structure, These are then used in conjunction with the
matrices for the original unmodified structure in the procedure

outlined above,

Care has to be taken in forming matrices bih and by, that super-
fluous terms are not included. For instance, the addition of a
cut-out to the original structure will mean the reduction to

zero stress of a certain group of elements. It may be, however,
that zerc siress in one element automatically causes zero stress
in another element. e.g. the ends of two flange elements meeting
at one point have the same end load at that point. Removal of
one flange will automatically imply zero loading at that point

in thé other flange and there will be no need to include the row

for this element in matrices bih and by.
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b) Thermal strains or other initial strains.
The generalized initial strains are given by H = L. 6 where the
matrix L is comprised of submatrices, Lj, Ly, eteo, (see Appendix I
equation (4) ) and © is the matrix of temperature. The matrices Ly
L2, etc. correspond to each element affected by temperature and are

given by application of the unit load theorem.

: sy
From H is derived X6 = -D .b._ .H where b, is the submatrix from
1La 1Lg

b; due to the elements concerned.
Hence stresses are given by Se = bj.Xg

For deflections a sub-matrix by, is found from b using the relative

g
rows and then rpg = bLaOH
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ANALYSIS OF SIMPLE BEAM PROBLEM

Rl 32 R3
4 i A A = Plange c.S.a.
d =
—~ = e o
L L o L L

It is required to determine the deflections at the load points of
application and the stresses in each of the elements. Consider the above
idealized structure as a combination of a statically determinate system
and a redundancy system. Let the statically determinate system consist
of a cantilever andkthen the redundancies will be represented by a

fixing moment M and a support reaction R at the right hand side, say.

Wy Wo Lo L Locality of elements
LS g : .Lu? Lg

Elements L are flanges with linearly varying end load.
Elements W are webs with constant shear fields.
Let span ¢ = 40 ft. L = 10 ft. &= 2 ft. A& = 0.025 ft.2

Let t = web thickness = 0.01 ft.

B = 10 p.si, = Wiy 107 TR B b 10t - e U LB/FT?
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Formation of Basic Matrices

For the L elements a row will refer to the reaction at one end of the
element. In this case the upper row will relate to the left hand end of the
element and the lower row to the right hand end. Positive signs indicate

tension loads and negative signs compression loads.,

bo
bo =EO\§J From S = bo.R + bs oX auu—(Appendix II)
Structural Element
- = b

1 2 3
— =
0 1 2 1
=1 e .
0 =l 5

0 1 2
0 e Ly

0 =1 =2
b =1 L
= 0 6
0 (8] il L
0 0 0 3

0 0 =
0 e & Ly
0 (] 0 .
0 0 0 L
0 0 (6] L8

0 0 0

The shear matrix bOw is the change in end load along an element divided
by the length of the element and is easily obtained by subtracting one row

of figures in bOL from the other row for each element.
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Ry 0 RB Structural Element
Bl =il 1 B
a
0 1 i1 Wy
3] 0 i wj
.0 . 9] wy
¥:
iy :
b, = From: —becR o BIY Lo (Appendix II)
=
M R Structural Element
i SL e e Ll
1 3L
o1 L .
= 3L D
1 3L
it 21, L,
0 £
: L
Ml oL 6
1 7L
1
1 L 3
= =2L
55
=1 = 7
1 5 .
1 0 U
=k -L L
A 0 8
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M R Structural Element
-_O l—d e
bi=lx |0 L e
0 ik w3
0 1 Wi

The flexibility matrix is obtained by using equations (2) and (3)

in Appendix 1.

£ g{}L ¢}
L BEomsve il ol 0 (Appendix iI )
5}
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Structural

Element
[1/3 1/6 -1
1/6 1/3
i/3 1/6 | L
1/6 1/3 | 5
1/3 1/6 j Lo
16 1/2 é
1/3 1/6 »
1/6 1/3 e
L) s
fi=L X _/ / 5
EA 1/6 1/3 3
/3 16
1/6 1/3 by
1/3 1/6 E
1/6 1/3 -
e
e st
= Structural Element
Fi ———————— w1
fy= Lod x 1 Wp
Gt
1 Wy
25 %_ L
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The remainder of the work is computational. Values have to be
substituted for the constants pre-multiplying each sub-matrix and then

these are ready for use in the equations (1) to (7) given in the method

of analysis.

This yields the following matrices.

F_2°77 2,50 0.98
~1.53 0.00 0177
29 77 ~2,50 -0,98

1.43 0,00 O
ey 0,00 Dol
-0,625 25 -0.625

ks 0,00 B

0,625 2,50 0,625
-0.625 =2.50 -0.625

w8l 0,00 158

0,625 2.50 0,625
=077 0,00 LG

Or 0,00 =1.43

0.98 2,50 Aol
6177 0,00 17h5
-0,98 _2.50 2.7

0.42 0.25 0.08
-0.08 0,25 0,08
~0,08 0,25 0,08

| -0.08 -0.25 —0 4o

Using this matrix to pre-multiply the load column matrix gives

the load in each member,

Structural Element
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F =108 x |o74 548 27l
e 27k 263
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CONCLUSIONS

The method has been used to analyse a simple beam problem and
although it does not illustrate the method's potentiatities completely
it serves as an introduction. In the main the procedure is automatic
but engineering judgement has to be used in at least two instances.
These are:

i, Idealizing the structure to a form that is considered to

be a sufficiently fine network of spars and ribsg

ii., Making the most suitable selection of redundancies.

With regard to the former it is inferred that the network of spars
and ribs for a thin skinned wing is usually of adequate fineness to
represent the wing structure. For decisions of the latter sort there

are several indications mentioned in the methods of analysis,

It is expected that on a Ferranti - Pegasus computer the computer
time for the analysis of a delta wing with 30 load points and with

cut-outs will be less than 50 hours.,
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APPENDIX I
The Unit Load Theorem and the Blement Flexibilities obtained from it.
il
Unit Load Theorem: l.r; = ééfjoiodv =)

where igf?j are the column matrices,

g = {5}{):9 Eyy. 222, Exy, ty=z, 52:{})53 ={C7‘xx9 Tyy, ﬁzzgﬁ"xy, Tyz, 5-‘zx}
Exx, etc are the true direct and shear strains in a structure due to a
given set of loads, prescribed displacements, thermal strains or any

other initial strains.

Oxx, etc, are the direct and shear stresses statically equivalent to a
unit load applied at the point and direction Jo

T is the deformation at the point J due to the above causes.

Element 1: Field with constant shear.

b
= L

where a.b is the field area and t the thicknesss G is the
shear modulus,
Element 2: Flange under linearly varying end load.
Let the end loads at the extremities of the element be
Sl and 829 then, for the Unit Load Theorem, the generalized

displacement is v = .S where S = {Sl 82}

foc il
3EA GEA - (3)

i
6EA 3EA




ITED ASTICS/
AVRO AIRCRAFT LIM. RERGRT No. EEN/BLASEECS (2

MALTON — ONTARIO

SHEET NO.
TECHNICAL DEPARTMENT

PREPARED BY DATE
AIRCRAFT:
M, Bampton Feb/59
CHECKED BY DATE

APPENDIX I (Cont'd)

Element 3: Flange under linearly varying strain. Let the strains be

Ui and 15 at the extremities of the element, then from

the Unit Load Theorem the generalized displacement is

v = Ln where 7 z@l nz}

L=L L
5. 6 = (&)
b
63

APPENDIX II

(1)

(2)

Derivation of Basic Formula.

v =f.g (by definition) Strains v due to a linearly elastic
structure under a load system R producing loads S internally
= f.b.R (by definition)
f = Flexibility matrix of the elements

b

Rectangular matrix for stress transformation
r = bov Unit Load Thevrem (matrix form)
b indicates compliance of stresses with static
equilibrium only i.e. B can = by or by
v: is the strain at the point j

J

T is the deformation at the peint j.

Substituting (1) into (2) gives.
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\

(3)

(%)

(6)

nv =
r=>b .foboR by = b will be used in determining the redundancies

X in terms of R
For the compatibility of the original basic structure the deformation

at each redundancy cut must be zero. i.e. r = o

and by definition,
S8 =b.R =B8R + byX b, = Rectangular matrix for stress
transformation of basic structure
b; = Rectangular matrix for stress
transformation of redundancy systems.

0 0
Hence bicﬁboR + biofobiX = 0

9
oo X = = 1 obiofobooR

=1
= =D ODGOR

Substituting in S = bR + biX

ﬂ
o

e
0

e
o
o
&
=

e b= b bl LB
]
As in (3) previously r = B .f.b.R

i.e. the flexibility of the system is
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(7) PoE o

Using b for b, P = boofobo
2] 9 9]

But from (6) previously b = by -b,.D~L.D

U =
(8) Therefore F = by.foby ~ by.f.by.D

e
=%, - B, D B,

(o)

9
where FO = bo'fobo




