AVRO AIRCRAFT LIMITED #### INTER-DEPARTMENTAL REMORANDUM Ref: 3272/04/J Date: October, 1957 To: Mr.J.D.Hodge - Technical Flight Test Co-ordinator From: J.H.Lucas - Chief of Performance Evaluation Subject: ENGINE THRUST FROM ARROW 1 FLIGHT TESTS Attached herewith, please find Appendix II to report 70/PERF/1 on Measurement of Engine Thrust from Arrow 1 Flight Tests. This appendix deals with adequacy of available instrumentation, applicable formulae and test bed calibration results. J.H. Lucas Chief of Performance Evaluation c.c Messrs: J.A.Chamberlin F.H.Brame D.N.Scard D.R.Woolley G.Esilman Central Files - without encl. | TECHNICAL DEDADTMENT | AVRO AIRCRAFI LIMITED | |----------------------|-----------------------| | TECHNICAL DEPARTMENT | TECHNICAL DEPARTMENT | | REPORT NO. TO/PERT/I APP II | | |-----------------------------|-----------| | SHEET NO. 1 | | | PREPARED BY | DATE | | R. Waechter | Oct. 1957 | | CHECKED BY | DATE | AIRCRAFT: ARROW I ENGINE PERFORMANCE ## MEASUREMENT OF Y J 75 ENGINE THRUST DURING ARROW I FLIGHT TESTS #### 1) SUMMARY This appendix to report 70/Perf/l summarizes a thrust measurement technique to be used during Arrow I flight tests. Use is made of available instrumentation only; therefore adequacy of instrumentation is discussed. Applicable formulae are given, to be used in conjunction with report 71/Perf/2 on Programming for Performance Data from Arrow I Flight Tests. Results of Pratt and Thitney Aircraft Run-in and Final Acceptance Engine test bed calibration runs are also contained herein from which the following information is extracted for Y J 75 P - 3 Engines No.610034 (port), No.610029 (stbd), No.610026 (spare) and No. 610027 (spare) for Arrow I Aircraft No.1 Military thrust rating = 15,500 lbs. static sea level standard thrust with corresponding H.P. Comp. R.P.M's of 3630, 3690, 8690 & 8715 respectively Each of these rpms are increased between 10 and 35 rpm to obtain N₂ Data Plate speeds of 98.80, 99.55, 99.72 and 99.72% respectively based on 8750 as 100% rpm. (see note 1). Average L.P.Comp. R.P.M. at military thrust = 0.768 N2 for existing engines Average "Aerodynamic " nozzle area = 510 (+2) sq.inches (A/B off) 923, 921, 947 and 917 sq. inches (A/B on). grows thrust coefficient curves of report 71/Perf/2 Charts III and IV to determine effective no zle area. NOTE:- 1) Pratt and Whitney Aircraft have stated that 100% N₂ R.P.M. = 3732 and 100% N₁ R.P.M. = 6774 and therefore the above percent data plate speeds should be revised accordingly. i.e. increase percentage by 0.20% | N/R6K | AVRO AIRCRAFT
MALTON - ONTARIO | | |-------|-----------------------------------|--| | | MALIUN . ONTARIO | | | SHEET NO 2 | | |-------------|---------| | PREPARED BY | DATE | | Waechter | Oct./57 | | CHECKED BY | DATE | REPORT NO. 70/PERF/1 APP. IT TECHNICAL DEPARTMENT ARROW 1 ENGINE PERFORMANCE ### 2) ADEQUACY OF INSTRUMENTATION FOR THRUST MEASUREMENT A list of available instrumentation which can be used for thrust measurement during Arrow 1 flight tests is given under report 71/PERF/2 (sheets 2 & 3). Complete engine instrumentation is not available and therefore certain estimations, based on manufacturer's figures for basic engine performance (Charts 3 & 4 Report 71/PERF/2) and on Avro Nobel lest results and a NACA method for ejector performance (Charts 6 & 7 Report 71/PERF/2) must be used to complete the calculations. In addition to using the above manufacturer's data for basic engine performance, their data must also be used to derive final nozzle total pressure P_{10} , and total temperature T_{10} , from measured quantities at the engine inlet and turbine outlet, for use in obtaining installed gross thrust (with ejector) values. Primary engine gross thrust determination depends on turbin outlet total pressure, P7, measurement which is adequately measured by manifolded rake measurements. Primary engine momentum drag depends on compressor inlet P_2 (total pressure) and p_2 (static pressure) measurements; the former being adequately measured by 2 or 3 representative probes (after rake calibration while the latter is measured by a single wall static vent mounted on the inboard side on the centre line of the inlet duct approx. 6 feet upstream of the L.P. compressor face. This static vent pressure measurement is primarily used for structural loading investigations and can be used to represent static pressure at the engine face for momentum drag consideration since relative areas should be the same (after allowing for aft diffuaing and nose bullet). However, approx. 3% total air weight flow is extracted to the overboard cooler just upstream of the compressor face and therefore the static pressure measurement should be increased approx. 1% to be more representative of the pressure at the compressor face. (See table 1) Determination of installed gross thrust (with ejector) requires the measurement of air weight flow and total temperature at the brass exit. For this, measurements of p_B , T_B and P_B are obtained by various means. i.e. Static pressure, p_B , is measured near the by-pass exit relative to ambient static pressure, p_1 . Absolute p_B can therefore be readily obtained by adding p_1 to (p_B-p_1) . Total by-pass temperature, T_B , is measured upstream of p_B and assumed equal to T_B near exit. Total pressure, P_B , is measured further upstream (approx. mid jet pipe) but is actually a static pressure measurement. Since the by pass area is large at this station a relatively low mean Mach number of .31 will be assumed such that measured mid jet pipe $p_B \approx P_B/1.07$. Measuremente of P_B & p_B are made by single probes while T_B is measured on two probee, one above and one below the jet pipe. Disadvantages of single or dual probe measurements compared to rake measurements for average readings are well known and therefore car must be exercised in interpreting the results. (see table 2) By-pass measurements are only made on the port engine and identicel readings will be assumed for the starboard side. Programing for performance data from Arrow 1 flight teste according to report 71/PERF/2 is therefore valid only for symmetrical power conditions. | AVRO AIRCRAFT LIMITED MALTON ONTARIO TECHNICAL DEPARTMENT | | REPORT NO. 70/PERF/1 App. II SHEET NO. 3 | | |---|--------------------|--|---------| | 1101111071 | DETARTMENT | PREPARED BY | DATE | | ROW 1 | ENGINE PERFORMANCE | R. Waechter | Oct /57 | | | | CHECKED BY | DATE | Geometric areas must be measured at the reference stations (by-pass exit and engine face inlet) and then corrected to an effective area using an estimated coefficient for use in appropriate air weight flow formulae. Air weight flows will be obtained as an output from IBM 704 computations as well as final net thrust. If these air weight flows do not reasonably agree with estimates (due to inadequate instrumentation) the area coefficients or pressure measurement coefficients can be adjusted such that a good measure of thrust is obtainable which should be consistent for all flights using the same instrumentation. A preliminary estimate of area coefficients is .97 and .93 for engine face and by-pass exit respectively. Probable tolerance on these area coefficients is approximately .025. In conclusion, it is stated that a reasonable or consistent measure of thrust is expected from available instrumentation. Some deterioration in thrust measurement accuracy is expected at the lower engine powers at high altitude (low ambient static pressure) due to inadequate instrumentation. Use of two or three range pressure measurement instrumentation at the engine face and at the turbine outlet would improve overall accuracy. AIRCRAFT | N/Rox | AVRO AIRCRAFT
MALTON ONTARIO | | |-------|---------------------------------|--| |-------|---------------------------------|--| REPORT NO. 70/PERF/1. APP. II | SHEET NO. 4 | | |-------------|-----------| | PREPARED BY | DATE | | R. Waechter | Oct. 1957 | | CHECKED BY | DATE | TECHNICAL DEPARTMENT ARROW 1 AIRCRAFT ENGINE PERFORMANCE #### TABLE 1 EFFECT OF INSTRUMENTATION ACCURACY ON DETERMINATION OF AIR WEIGHT FLOW AND MOMENTUM DRAG AT ENGINE FACE Note: 1) $$W_E = P_E A_2 V_2 = p_2 \times A_2 \times M_2 \times \sqrt{g Rt_2} = Rt_2$$ $$= \sqrt{\frac{\gamma_g}{Rt_2}} \times p_2 \quad A_2 \quad M_2$$ where "static t_2 " = "total T_2 " $\left(\frac{p_2}{P_2}\right)^{\frac{\gamma-1}{\gamma}} = T_1 \left(\frac{p_2}{P_2}\right)^{\frac{\gamma-1}{\gamma}}$.286 2) $$m_E V = W_E \times V$$ where $V =$ free stream velocity 3) $$M_2^2 = \left[\left(\frac{P_2}{p_2} \right)^{\frac{4}{2}} \right] \times \frac{2}{\sqrt{-1}} = 5.0 \left[\left(\frac{P_2}{p_2} \right)^{.286} \right]$$ For 1% error in pressure measurement at engine face $$M_2 = .5$$ tolerance = + .015 = + 3.0% $$M_2 = .4$$ tolerance = $\frac{+}{.019}$.019 = $\frac{+}{.4.75}$ % $$M_2 = .3$$ tolerance = $\frac{+}{.025}$ = $\frac{+}{.025}$ 8.3% Hence if P_2 measurement is in error by $\stackrel{\star}{\underline{}}$ 1% then $\stackrel{\star}{\underline{}}$ will be error $$\pm$$.143% and WE and mEVwill be in error \pm 3.14% at M2 = .5 $$\pm$$ 8.44% at $M_2 = .3$ If p2 measurement is in error by 1% the effect on \mathbf{W}_{E} and \mathbf{m}_{E} x V will be similar to that for P2 but with the absolute value of the error reduced by 1%. | N/Ro. | | | CRAFT | 11 | |-------|------|------|---------|----| | | MALT | · NC | ONTARIO | | | | | | | | REPORT NO. 70/PERF/1 APP II CHECKED BY PREPARED BY DATE R. Waechter Oct. 1957 DATE #### TECHNICAL DEPARTMENT AIRCRAFT ARROW 1 ENGINE PERFORMANCE MITED #### TABLE II EFFECT OF INSTRUMENTATION ACCURACY ON DETERMINATION OF AIR WEIGHT FLOW AT BY-PASS EXIT NOTE:- 1) $$M_{B} = \mathcal{P}_{B} \quad A_{B} \quad V_{B} = \frac{\mathbf{p}_{B}}{R\mathbf{t}_{B}} \times A_{B} \times M_{B} \times \sqrt{\mathbf{y}_{g} R\mathbf{t}_{B}}$$ $$= \sqrt{\frac{\mathbf{y}_{g}}{R\mathbf{t}_{B}}} \quad \mathbf{p}_{B} \quad A_{B} \quad M_{B}$$ 2) $M_{B}^{2} = \left[\frac{\left(\mathbf{p}_{B}\right)^{\frac{1}{2}-1}}{\left(\mathbf{p}_{B}\right)^{\frac{1}{2}}} - 1 \right] \frac{2}{\mathbf{y}-1} = 5.0 \left[\frac{\left(\mathbf{p}_{B}\right)^{\frac{1}{2}-286}}{\left(\mathbf{p}_{B}\right)^{\frac{1}{2}-286}} - 1 \right]$ For 1% error in pressure measurement $$M = 1.0 \text{ tolerance} = \pm .009 = \pm 0.9\%$$ $$M = 0.8 \text{ tolerance} = + .010 = + 1.25\%$$ $$M = 0.6 \text{ tolerance} = \frac{+}{.013} = \frac{+}{.025} 2.25$$ Hence if PB measurement is in error by + 1% Then $$W_B$$ will be in error ± 1.04 /at $M_B = 1.0$ If \mathbb{P}_B measurement is in error by 1% the effect on $\mathtt{W}_{\pmb{B}}$ will be similar to that for $P_{\rm B}$ but with the absolute value of the error reduced by 1%. Any error in \mathtt{T}_B measurement causes an error in \mathtt{W}_B which is inversely proportional to $\sqrt{T_p}$. #### 3) THRUST MEASUREMENT TECHNIQUE The following symbols are used in the derivation of ensuing formulae:- capital T = total temperature "K capital P = total pressure p = static pressure F = installed engine thrust (with extractor) X = basicor primary engine thrust REPORT NO. 70/PERF/1 APP. II ET NO IEUNN ARROW 1 AIRCRAFT ENGINE PERFORMANCE | PREPARED BY | DATE | |-------------|-----------| | R. Waechter | Oct. 1957 | | CHECKED BY | DATE | Primary engine gross thrust is derived from turbine discharge total pressure measurement as follows:- $$X_G = \left[1.255 \frac{P_7}{p} - 1\right] C_g \times A_{10} p \text{ for } \frac{P_7}{p} > 1.852$$ (1) $$I_G = 8.06 \left[\left(\frac{P_7}{p} \right)^{.248} - 1 \right] C_g \times A_{10} p \text{ for } \frac{P_7}{p} < 1.852 (2)$$ for $\gamma = 1.33$ and p = ambient static pressure Effect of %=1.33 down to approx. 1.30 for afterburner operation has negligible effect on the above formulae. (See also P.W.A. Curve No. Inst. 16624). Nominal AlO = 3.68 sq.ft. = 530 sq.inches (cold and relaxed) A/B off = 6.398 sq.ft. = 921 sq.inches (est. operating) A/B on However A_{10} values, based on P.W.A. engine test bed calibration runs on engines for A/C No. 1 = 510(\pm 2) sq.inches A/B off = 923(+ 19) sq.inches A/B on $C_g = \text{gross thrust coefficient from P.W.A. curve no inst. 27214 and 18151.$ To cover engine idling cases at low altitude curve 27214 for M/B eff must be extended downward to $P_{7/p} \approx 1$ where C_g will then be approximately .80 based on data from log book of engines 610026 and 610027 (See charts III and IV of report 71/PERF/2). To determine primary net thrust, momentum drag to the engine proper must be subtracted from XG to obtain XN. Total and static pressure are measured at or near the engine face and therefore momentum drag is determined from the formulae:- $$\mathbf{m}_{\mathbf{E}}^{\mathbf{V}} = \mathbf{A}_{2} \ \mathbf{p}_{2} \left(\frac{2}{\mathbf{Y} - 1} \right) \sqrt{\left[\frac{\mathbf{P}_{2}}{\mathbf{Y}} \right]^{\mathbf{Y} - 1}} - 1 \ \mathbf{x} \left[1 - \left(\frac{\mathbf{p}}{\mathbf{P}} \right)^{\mathbf{Y} - 1} \right] = \mathbf{W}_{\mathbf{E}} \mathbf{x} \mathbf{M} \mathbf{x} 65.8 \sqrt{\mathbf{T}_{0}}$$ where A_2 = geometric area at engine face corrected by an area coefficient 4 1319 A 70/PERF/1 APP. II REPORT NO. CHECKED BY SHEET NO PREPARED BY DATE R. Waechter Oct. 1957 DATE AIRCRAFT: ARROW 1 ENGINE PERFORMANCE The next stage in thrust measurement consists of determining net thrust of the complete engine installation including intake duct and ejector. Total gross thrust, F_G is determined from the ratios F_G for A/B off for A/B on, where XG is the primary gross thrust as previously determined and Xic is an ideal primary gross thrust. Ideal primary gross thrust assumes isentropic expansion to ambient pressure behind the final nozzle and is determined as follows $$x_{ig} = m_{10} \sqrt{\frac{2 \times R_g T_{10}}{\gamma - 1} \left[1 - \left(\frac{p}{P_{10}}\right)^{\frac{\gamma}{\gamma} - 1}\right]}$$ Now for the momentum gross thrust (MV)₁₀ in the final nozzle, ambient p in the above formula is substituted by final nozzle p₁₀, and for choked flow $\left(\frac{P_{10}}{p}\right) > 1.852$, $M_{10} = 1$ and $p_{10} = \left(\frac{2}{\gamma+1}\right)^{\gamma-1} \times P_{10}$ Then $$\frac{X_{ig}}{(mV)_{10}} = \sqrt{\frac{1 - (p/p_{10})^{\frac{y-1}{y}}}{\frac{y-1}{2}}} = 2.66 \sqrt{1 - (p/p_{10})^{.243}}$$ for Y = 1.33 Now equation (1) can be rearranged such that $$\frac{x_{G}}{(mV)_{10}} = \frac{\frac{1.255 \frac{P_{10}}{p}}{p} - 1}{.714 \frac{P_{10}}{p}}$$ Hence $$\frac{x_{i_G}}{x_G} = \frac{1.90 \quad \frac{P_{10}}{p} \quad \sqrt{1 - \left(\frac{p}{P_{10}}\right) \cdot 248}}{1.255 \quad \frac{P_{10}}{p} \quad -1}$$ See Chart V Report 71/Perf/2 (3) | REPORT No. | 70/PERF/1 | APP. 1 | |------------|-----------|--------| | | | | SHEET NO _____ 8 #### TECHNICAL DEPARTMENT AIRCRAFT: ARROW 1 ENGINE PERFORMANCE | PREPARED BY | DATE | |-------------|-----------| | R. Waechter | Oct. 1957 | | CHECKED BY | DATE | This equation is used for \sqrt{B} off only, for which it can be assumed that $P_{10} = .99 P_7$ (where P_7 is measured). The ratios $\frac{\mathbf{F}_{G}}{\mathbf{X}_{\mathbf{i}_{G}}}$ and $\frac{\mathbf{F}_{G}}{\mathbf{X}_{G}}$ are obtained from experimental data i.e. for A/B off, a NACA solution is used (Chart VI of 71/Perf/2) and for A/B on, Avro Nobel Test results are used (Chart VII of 71/Perf/2) To determine $\frac{F_G}{X_{1_G}}$ and $\frac{F_g}{X_G}$ values of $\frac{P_{10}}{p}$ and μ must be known. $\frac{P_{10}}{p}$ must be derived from measured $\frac{P_7}{p}$, which for A/B off = .99 $\frac{P_7}{p}$ (as above) while for A/B on, $\frac{P_{10}}{p}$ is derived as follows:- According to J T 4A Engine Installation Handbook $P_{10} = 0.1297 X_G + 0.8 p$ for A/B on, and if $A_{10} = 6.398$ sq.ft., then $X_G = 1.250 \frac{P_{10}}{p} - 1$ It is therefore evident that a nozzle coefficient, based on $\frac{P_{\mbox{\scriptsize 10}}}{p}$, of .965 was used. Now C_g (Chart IV Report 71/Perf/2) is based on $\frac{P_7}{p}$; and the difference between C_g and .965 is assumed to account for the pressure loss from P_7 to P_{10} $$\frac{\chi_G}{C_G A_{10} p} + 1 = \frac{1.250 p_7}{p}$$ (based on P₇) and $$\frac{X_G}{.965 A_{10} p}$$ + 1 = 1.250 $\frac{P_{10}}{p}$ (based on P_{10}) Solving these two equations $$\frac{P_{10}}{p} = \frac{C_g}{.965} \times \frac{P_7}{p} - \frac{C_g}{1.206} + \frac{0.8}{1.206} ---(4)$$ 1310 4 REPORT NO. 70/PERF/1 ADD. II SHEET NO. _ TECHNICAL AIRCRAFT ENGINE PERFORMANCE | | PREPARED BY | DATE | |-------|-------------|--------| | R. Wa | aechter | Oct/57 | | • | CHECKED BY | DATE | | | | | For evaluation of μ which equals $\frac{\mathbb{W}_B}{\mathbb{W}_{10}}$ $\sqrt{\frac{\mathtt{T}_B}{\mathtt{T}_{10}}}$ the following assumptions are made: ARROW 1 a). W_B (lbs/sec) and T_B ($^{ m O}$ K) are air weight flow and total tempersture as measured in the by-pass near the final nozzle. $$W_{B} \neq \frac{p_{B}^{A}B \sqrt{g}}{\sqrt{RT_{B}} \binom{P_{B}}{P_{B}} \sqrt{\frac{y-1}{g}}} \sqrt{\frac{2 \sqrt{g}}{\gamma - 1} \left[1 - \binom{p_{B}}{P_{B}}\right]^{\frac{\gamma}{g}}} = \frac{p_{B}^{A}B \sqrt{g}}{\sqrt{RT_{B}} \binom{P_{B}}{P_{B}} \cdot 286} \sqrt{\frac{1 - \binom{p_{B}}{p_{B}} \cdot 286}{P_{B}}} \sqrt{\frac{1 - \binom{p_{B}}{p_{B}} \cdot 286}{P_{B}}}$$ for Y= 1.4 , R =96.02 b) W₁₀ = air weight flow through the primary nozzle which for the A/B off case is assumed = engine inlet WE and for the A/B on case is assumed = WE + QA/B (A/B fuel flow, lbs/hr) i.e. engine fuel flow (approx 2.5% of WE) is assumed to offset airbleed & leakage b) $$T_{10} = T_7$$ (°K) for A/B off and $\sqrt{T_{10}}$ (°K) = $\left[\frac{.745 \text{ x/G}}{W_E + \frac{Q \text{ A/B}}{3600}}\right] \text{ x}$ $$\left[\frac{.0009}{P}\right]^{\frac{X_G}{P}} + 0.8$$ for A/B on (p in psi) (7) Formula (7) is obtained by combining two equations from J.T.4A Engine Installation Handbook and letting $W_{10} - W_E + \frac{QA/B}{3600}$ i.e. Combine $$T_{10} = \left[\frac{x_{G}/w_{10}}{2.435 - 1.997 \frac{p}{P_{10}}}\right]^2$$ for T_{10} in OR , with $P_{10} =$ 0.1297 X_G + 0.8 p for p in psf. | N/R6C | | A/RCRAFT
N ONTARIO | | |-------|-------|-----------------------|------| | TECH | NICAL | DEPART | MENT | REPORT NO 70/PERF/1 AppoII SHEET NO PREPARED BY Oct. 1957 R. Waechter CHECKED BY DATE AIRCRAFT ARROW 1 ENGINE PERFORMANCE To darive installed net thrust (excluding external pressure drag around momentum drag and spillage drag must be subtracted from installed ejector), gross thrust. Momentum drag, my, is determined by mass flow measurements at the engine face, to which is added the mass flow as measured in the ty-pass near the exit and then multiplied by airplane velocity. i.e. my $$\Rightarrow$$ $(W_E + W_B)'$ M x 65.8 $\sqrt{T_0}$ WE is obtained from equation (6) . WB is obtained from equation (5). M = true Mach number Tom true ambient air temperature OK It should be noted that - 1. We is airflow that enters through the by-pass doors and/or through the blow in doors. It is assumed that air entering the blow in doors (at low Mach number, low altitude) is extracted from the free stream at free stream velocity - 2. Airflow through the inlet duct to the overboard oil cooler is neglected since this airflow is less than 3% of total air flow, and approximately 50% of the momentum drag of the oil cooler air flow, is regained as thrust at the overboard cooler exit. The effect therefore is less than 1th on total momentum drag and less than .75% on net thrust. Intake spillage drag is not directly measureable, except by suitable flight tests such as accelerated levels at various engine settings, and hence wind tunnel data will be used. This data may change as the tests progress. Intake spillage drag data is presented as curves of COp and Pth Pi versus M (see chart $$\overline{\text{VIII}} \& \overline{\text{IX}}$$ Report 71/PERF/2 Issue 2) where C_{DS} = spillage drag coefficient = $\frac{D_{\text{S}}}{\frac{\text{Y}}{2}} \text{pM}^2 \text{ S} = \frac{\text{Y}}{\text{O}(\frac{m_1}{m_0})} \left(\frac{m_1}{m_0} - \frac{m_1}{m_1}\right)$ S = area = 40.98 sq.ft. p = ambient static pressure M = Mach number m; = actual inlet air weight flow = air flow to engine, WE, as measured + air flow in by-pass, WB, as measured + air flow to overboard cooler, Wc, (assume mean value = 5 lb/sec.) m_1^2 = inlet air weight flow corresponding to choked conditions at the throat mo = nominal or capture air weight flow REPORT NO 70/PERF/1 App. II CHECKED BY PREPARED BY DATE R. Waachter Oct. 1957 #### TECHNICAL DEPARTMENT AIRCRAFT ARROW 1 ENGINE PERFORMANCE Adding W_B and W_C to W_E to obtain m_i is not valid when the by-pass doors are closed. This only occurs at low altituda, low Mach number and therefore is unimportant for spillaga drag considerations. Now affective inlet throat area = $.97 \times 5.6 = 5.43 \text{ sq.ft.}$ and capture area = 10.18 sq.ft. Hance:- $$m_0 = \rho AV = \frac{p}{RT_0} \times 10.18 \times 65.8 \text{ M} \sqrt{T_0} = 6.97 \text{ pM} \text{ for p in psf}$$ and To (amb. static temp.) in oK $$m_{i} = (PAV)_{throat} = \left(\frac{D}{Rt}\right)_{th} \times 5.43 \cdot 65.8 \left(M\sqrt{t}\right)_{th} \text{ where t = atatic temp.}$$ $$= 1.962 \frac{P_{th}}{\sqrt{t_{th}}} \text{ for } M_{th} = 1 \text{ , } P_{th} = 1.894 \text{ pth & R = 96.02}$$ $$= 1.962 \frac{P_1}{\sqrt{t_{t_h}}} \left(\frac{P_{t_h}}{P_1} \right)$$ Now $$T_0$$ (1 + .2M²) = t_{t_h} (1 + .2M²)_{t_h} = 1.2 t_{t_h} Hence $$\frac{\mathbf{m_i}}{\mathbf{m_o}}^{*} = \frac{1.962 \ P_1}{6.97 \ P_M} \left(\frac{P_{t_h}}{P_1}\right) \times \sqrt{\frac{1.2 \ T_0}{(1+.2M^2)T_0}} = .308 \ \frac{(1+.2M^2)^3}{M} \left(\frac{P_{t_h}}{P_1}\right)$$ Therefore, apillaga drag can be avaluated knowing W_E , W_B , p, M, To and using charts $\overline{\text{VIII}}$ & $\overline{\text{IX}}$ of Raport 71/PERF/2 Isaue 2. Installed nat thrust can then be compared to primary net thrust as datermined praviously, in order to verify installation effects. The latter thrust is also useful for comparison to engine brochure curves (after correcting for ambient temperature to stendard, intake pressure recovery power extraction and air blaed) and should be more reliable since it will have been based on Pow. A. approved thrust coefficients and turbine outlat and engine face total pressure measurements but with the exception of unapproved static pressure measurement at the engine face. ## TECHNICAL DEPARTMENT AIRCRAFT ARROW 1 A/C No. 1 E GINE PERFORMANCE | REPORT NO 70/PENF/1 | APP.II | |---------------------|-----------| | SHEET NO 12 | | | PREPARED BY | DATE | | R. Waechter | Oct. 1957 | | CHECKED BY | DATE | | | | ## CORRECTED ENGINE PERFORMANCE (ARROW 1 A/C No.1) (P.W.A. RUN IN AND FINAL ACCEPTANCE ENGINE TEST: BED CALIBRATIONS) | Engine:- | 610034 | (port) | | | | | | |------------------------------------|----------------|-------------------------------|--|------------------------------|-------------------------------|----------------------|---| | Power | F _N | N ₂ | N ₁ | T.S.F.C. | $\mathbf{r}_{\mathrm{T}_{7}}$ | PT7/PT2 | N2 Data Plate
Speed (MIAS 60°)
R.P.I. | | Military
Normal
75% Norm. | 13,730 | 8630
3380
7940 | 6630
6250
5550 | •192
•759
•726 | 1057
947
732 | 2.50
2.33
1.99 | 3645 at 93.30% | | Engine:- Military Normal 75% Norm. | 13,780 | 3690 | 6640
6280
5600 | •797
•757
• 728 | 1073
960
337 | 2.51
2.34
1.93 | 1710 at 99.55% | | Engine:- | 610026 | (spare) | | | | | | | Military
Normal
75% Norm. | 13,730 | 3690
8445
7955 | 6670
6310
5580 | .733
.760
.733 | 1068
950
7 :90 | 2.49
2.33
2.01 | 3725 at 99.72% | | Engine:- | 610027 | (spare) | | | | | | | Military
Normal
75% Norm. | 13,780 | 3715
84 5 0
7915 | 67 1 5
6 335
55 6 0 | .806
.715
.737 | 1065
965
8 15 | 2.51
2.35
2.02 | 3725 at 99.12% | Note: - Percentage (N2) R.P.M.'s based on 8750 as 100% Average Military N₁ = .768 N₂ | MALTO | AIRCRAFT LIMITED
N - ONTARIO | REPORT NO. 70/PERF/ | L APP,II | |-----------|---------------------------------|---------------------|-----------| | AIRCRAFT: | DEPARTMENT | PREPARED BY | DATE | | ARROW 1 | ENGINE PERFORMANCE | R. Waechter | Oct. 1957 | | A/C 1 | | CHECKED BY | DATE | #### AFTERBURNER PERFORMANCE ## Y J 75 P - 3 E GINES FOR ARROW 1 A/C No. 1 ## (P.W.A. RUN IN AND FINAL ACCEPTANCE ENGINE FEST BED CALIBRATIONS) | Engine:- 610 | 034(port) | | | | | |----------------------------|---------------------|--------------|---------------|---------------|----------------------| | Power C | orr. F _N | Obs.N2 | T.S.F.C. | BIAS.T.S.F.C. | T _{T2} (°F) | | Mil.Non A/B Afterburner | 16,840
25,520 | 3600
3610 | .327
1.933 | 1.945 | 32
32 | | Engine:- 610 | 029 (stbd) | | | | | | Mil.Hon A/B
Afterburner | | ₹670
₹665 | .320
1.92 | 1.93 | 33
32 | | ongine:- 610 | 026 (spare) | | | | | | Mil.Non A/B
Afterburner | | ანე0
პიპ5 | .324
1.90 | 1.915 | 32
31 | | Engine:- 610 | 027(spare) | | | | | | Mil. Non A/B | | 8700
3695 | 1.94 | 1.95 | 40
40 | | TUBE: | ! | REPORT No 70/PERF/1 APP.II | | | | | |----------|--|----------------------------|-------------|--------|--|--| | MALTO | AIRCRAFT LIMITED N - ONTARIO DEPARTMENT | | SHEET NO14 | | | | | IRCRAFT: | | | PREPARED BY | DA | | | | ARROW 1 | ENGINE PERFORMANCE | R. | Waechter | Oct. 1 | | | | A/C No 1 | ENGINE PERFORMANCE | | CHECKED BY | DAT | | | A/C No. 1 #### DETERMINATION OF " AERODYNAMIC" NOZZLE AREA DATE Oct. 1957 DATE #### Y J75 P - 3 ENGINES FOR ARROW 1 A/C No. 1 #### P.W.A. RUN IN AND FINAL ACCEPTA CE TEST BED CALIBRATIONS Assumptions 1) $$\frac{X_G}{C_g A_{10} p} = \frac{1.255}{p_7} \frac{P_7}{p} - 1$$ or $A_{10} = \frac{X_G}{(C_g \times p)} \frac{P_7}{1.255} \frac{P_7}{P_7} - 1$ 2) $\frac{P_7}{p} = \frac{P_7}{P_2}$ and $\frac{X_G}{p} = \frac{F_N}{14.7 \delta_{T_2}}$ 3) At same N₂, $\frac{P_7}{P_2}$ A/B on = P₇/P₂ A/B off 4) C_g from 71/PERF/2 Chart III A/B off Chart IV A/B on 5) P.W.A. Final Acceptance Test Bed Calibrations have been corrected to standard sea level conditions Note:- 1) Nominal A₁₀ for Y J75 P - 1, 3 and 11 engines = 530 sq.in. (A/B off) = 921 sq.in. (A/B on) 2) A₁₀ values are calculated at actual test points # TECHNICAL DEPARTMENT REPORT NO 70/PERF/1 APP. II SHEET NO 15 AIRCRAFT: ARROW 1 A/C No. 1 ENGINE PERFORMANCE PREPARED BY DATE Oct. 1957 R. Waechter DATE CHECKED BY | Engine | $\frac{\mathbf{F}_{\mathbf{N}}}{\mathbf{o}_{\mathbf{T}_{2}}} = \frac{14.7 \ \mathbf{X}_{\mathbf{G}}}{\mathbf{P}_{2}}$ | P ₇ P ₂ | CgA10P2 | Cg | X _G
A ₁₀ P ₂ | 14.7 A ₁₀ | A ₁₀ | A ₁₀ (aver.) | |--------------------------------------|---|---|---|--|---|--|---|-------------------------| | 610026
(spare) | 9,860 | 1.950
2.131
2.150
2.400
2.470
2.600
2.640 | 1.445
1.737
1.700
2.010
2.100
2.260
2.310 | .910
.937
.935
.959
.963
.973 | 1.317
1.628
1.591
1.929
2.022
2.201
2.258 | 7490
7460
7650
7460
7510
7520
7580 | 509
508
521
507
511
512
516 | 512 ⁰ | | 61002 7 (spare) | 10,390
12,420
12,610
14,310
15,210
16,630
16,790 | 1.988
2.220
2.230
2.430
2.480
2.630
2.639 | 1.495
1.785
1.800
2.050
2.110
2.300
2.310 | .903
.940
.942
.960
.966
.974 | 1.351
1.678
1.697
1.970
2.040
2.241
2.255 | 7690
7400
7430
7520
7450
7420
7445 | 523
503
505
512
507
505
507 | 509 ^a " | | 610029
(stbd) | 10,500
11,730
12,670
14,300
14,800
16,650
16,650 | 2.016
2.120
2.235
2.441
2.441
2.630
2.630 | 1.530
1.660
1.805
2.063
2.300
2.300 | .913
.930
.943
.962
.962
.974 | 1.398
1.54/
1.702
1.987
1.987
2.241
2.241 | 7500
7590
7430
7440
7440
7420
7420 | 510
516
506
506
506
505
505 | 508 ^m | | 610034
(port) | 9,540
11,830
11,830
14,110
15,000
16,510
16,880 | 1.910
2.150
2.150
2.370
2.450
2.616
2.639 | 1.395
1.700
1.700
1.975
2.075
2.280
2.310 | .905
.935
.935
.956
.963
.974 | 1.263
1.590
1.590
1.890
1.999
2.221
2.254 | 7550
7450
7450
7450
7460
7500
7430
7430 | 513
507
507
508
510
506
509 | 508 " | | 610026
610027
610029
610034 | 26,000 A/B On
25,150 " "
25,220 " "
25,520 " " | 2.635
2.634
2.630
2.639 | 2.305
2.305
2.300
2.310 | .809
.309
.309
.309 | 1.867
1.867
1.862
1.871 | 13920
13480
13540
13630 | 947 }
917 }
921 }
928 } | 932 "" |