

Lateral Characteristics of an Avro Swept Wing with and Without Tip Tanks.

7 June 1950

N 4000 10 W 120

Signed E. B. MacC.

NATIONAL RESEARCH COUNCIL

Sheet 1 of 10

Date 7 June, 1950 '

A.M. 5684-5

L.O. 5684A

# UNCLASSIFIED



LATERAL CHARACTERISTICS OF AN AVRO SWEPT WING, WITH AND WITHOUT TIP TANKS

Prepared by: E.B. MacCuish



E O M M

Signed E.B. Macc.

#### NATIONAL RESEARCH COUNCIL

Sheet 2 of 10

Date 7 June, 1950

A.M. 5684-5

LO. 5684A

#### 1. INTRODUCTION

This memorandum contains the results of wind tunnel measurements of rolling moment, yawing moment, and side force, made on a model of an A. V. Roe Canada Limited swept wing, with and without tip tanks. Lift, drag and pitching moment measurements were reported in Reference 1.

#### 2. MODEL

The pertinent model geometry is given in Figure 1.

Large spanwise cracks, one on each surface, had appeared in the model before the tests, and some distortion was indicated by the fact that with the tail sting removed the trailing edges of the two sides of the wing, at the centre, were displaced vertically about 1/8 inch.

#### 3. RANGE OF TESTS

At R.N. = 2.2 x  $10^6$  the model, with and without tanks, was yawed from -2° to  $16^\circ$  at each of six values of CL between about zero lift and CL<sub>max</sub>. At R.N. = 3.3 x  $10^6$  measurements were made, wing alone, for the same angle of yaw range at lift coefficients of - 0.01, 0.18, 0.28 and 0.38.

### 4. DESCRIPTION OF TESTS

The model was assumed to be symmetrical about its horizontal centre plane, hence, to obtain the interference of the main struts, which are normally on the high pressure side of the wing, the model, with dummy struts mounted, was pitched negatively rather than inverted. The tests revealed little strut interference, but the components measured at positive angles of attack did not agree with those measured at corresponding lift coefficients in the negative angle of attack range. Further tests were made, therefore, with dummy struts mounted and the model pitched positively, to determine the effect of struts on the low pressure side of the wing. Considerable strut interference was noted in this case, but when the appropriate corrections were applied to the results obtained at negative angles of attack the above disagreement was still present. To explain this difference in the lateral force and moment components it was concluded that the model was asymmetrical.

Sheet 3 of 10

Date 7 June, 1950 A.M. 5684-5

LO. 5684A

This conclusion is based on the reasonable assumptions: that the dumm struts exactly simulate the main struts, and that the flow is uniform within the volume swept out by the model.

#### 5. RESULTS

The results are given in Tables I to V and Figs. 2 to 12.

Yawing moment is given, as measured, about the suspension point, which was at 0.52c.

Rolling Moment:

The rolling moments, with and without tanks, are plotted against angle of yaw in Figs. 2 and 3. Values of  $l_{\rm V}$ , measured at zero yaw are plotted in Fig. 8. The latter decreases, indicating more stability, as  $C_{\rm L}$  is increased up to 0.5 where  $l_{\rm V}$  begins to increase until instability is indicated above  $C_{\rm L}=0.7$ , wing alone, and 0.85 with tip tanks. This unstable change indicates that the lift on the leading half of the wing falls off sconer than the lift on the trailing half of the wing.

Yawing Moment:

The yawing moment measurements are plotted in Figs. 4 and 5 and values of  $n_V$  in Fig. 8. Below  $C_L=0.5$   $n_V$  is small, but above this value,  $n_V$  rapidly becomes positive, indicating directional stability. At  $C_L=0.9$ , however,  $n_V$  becomes negative. This is due to the reduction in induced drag of the leading tip associated with the early fall-off of lift. At the three highest lift coefficients the curves of  $C_N-V$  have radically departed from linearity at the large angles of yaw.

Side Force:

The side force results are plotted in Figs. 6 and 7, and values of  $y_v$  in Fig. 9. In general,  $y_v$  is positive. As in the case of  $l_v$  and  $n_v$ ,  $y_v$  is measured at  $\psi=0^\circ$  and at the higher angles of attack  $C_y$  tends to be nonlinear with  $\psi$ .

Effect of Wing Asymmetry:

By comparing the measurements made in the positive angle of attack range with those made in the negative range, the effect of model asymmetry can be seen. Appreciable

LO. 5684A

A.M. 5684-5

Date 7 June, 1950

changes are noticeable in ny and yy, but ly is not affected much. The model asymmetry is not very important, therefore, because in the complete aircraft the vertical tail and fuselage provide the major contribution to ny and yv. The results show, however, the extreme sensitivity of the wing to small departures from horizontal symmetry.

Effect of Tip Tanks:

A definite increase in effective dihedral due to tip tanks is evident from Fig. 8 where ly is seen to be more negative with tanks than without. Furthermore the change from a negative value of ly to a positive one takes place at a greater value of CL. This is apparently due to an end plate effect of the tanks.

The effect of tanks on nv is not as pronounced as in the case of ly. In general, ny is more positive with tanks on.

The presence of tip tanks makes yw more negative as would be expected from a consideration of side area.

#### 6. CONCLUSIONS

- The lateral components measured when the model was pitched positively did not agree with those measured when the model was pitched negatively. The differences are concluded to be due to a lack of horizontal symmetry in the model. Cracks had appeared in the surfaces of the model and some distortion was evident. Because the rolling moments showed fair agreement, this is not very important when the complete model is considered, the fuselage and vertical tail providing the major contributions to nv and yv. The results do show, however, the extreme sensitivity of the lateral components of the wing to apparently small departures from symmetry. In future to prove more directly the presence or absence of symmetry a model should be pitched positively in one position and then turned over and pitched positively again.
- The values of ly and ny indicate increasing stability up to values of CL between 0.7 and 0.9, where they change sign and indicate instability. The values of  $y_v$  are in general positive. The curves of  $C_1$ ,  $C_n$  and  $C_y$  against  $\psi$ become non-linear as the model is pitched above the angle of attack at which the tip stall begins.
- The presence of tip tanks increases the effective dihedral, increases the directional stability about the 0.520 point, and makes yv more negative.

Signed E.B. MacC.

#### NATIONAL RESEARCH COUNCIL

Sheet 5 of 10

Date 7 June, 1950

A.M. 5684-5

LO. 5684A

#### 7. REFERENCES

1. E.B. MacCuish Lift, Drag and Pitching Moment Characteristics of aModel of an A. V. Roe Swept Wing With and Without Tip Tanks. Aerodynamics Memo 5684-2.

#### NOTATION

$$c_L = \frac{\text{lift}}{\frac{1}{2}\rho v^2 s}$$

$$C_y = \frac{\text{side force}}{\frac{1}{2}\rho V^2 S}$$

$$c_1 = \frac{\text{rolling moment}}{\frac{1}{2}\rho V^2 \text{Sb}}$$

$$C_n = \frac{\text{yawing moment}}{\frac{1}{2}\rho V^2 Sb}$$

$$\beta$$
 - angle of sideslip =  $-\psi$ 

$$l_v = \frac{dC_1}{d\beta}$$
 per radian

$$n_v = \frac{dC_n}{d\beta}$$
 per radian

$$y_v = \frac{1}{2} \frac{dC_y}{d\beta}$$
 per radian

Signed E. B. Macc.

### NATIONAL RESEARCH COUNCIL

Sheet 6 of 10

Date 7 June, 1950

A.M. 5684-5

L.O. 5684A

#### TABLE I

Wing Alone R.N. =  $2.2 \times 10^6$ 

Positive a Range

 $c_1$ 

| CT A                           | -8                                    | 0                             | 2                                | 4                                | 6    | 8                                  | 12                                        | 16                                        |
|--------------------------------|---------------------------------------|-------------------------------|----------------------------------|----------------------------------|------|------------------------------------|-------------------------------------------|-------------------------------------------|
| 03<br>.20<br>.45<br>.71<br>.90 | .001<br>001<br>002<br>002<br>0<br>003 | 0<br>001<br>001<br>003<br>005 | 0<br>.001<br>.001<br>.003<br>009 | 001<br>.003<br>002<br>012<br>020 | .005 | .004<br>.008<br>.002<br>017<br>031 | 001<br>.005<br>.011<br>.004<br>013<br>034 | 002<br>.007<br>.014<br>.008<br>011<br>036 |

 $c_n$ 

| C <sub>L</sub>                 | -2                                              | 0                             | 2                             | 4                                              | 6                             | 8                             | 12                                            | 16                             |
|--------------------------------|-------------------------------------------------|-------------------------------|-------------------------------|------------------------------------------------|-------------------------------|-------------------------------|-----------------------------------------------|--------------------------------|
| 03<br>.20<br>.45<br>.71<br>.90 | 0001<br>.0001<br>0001<br>.0018<br>.0009<br>0010 | 0001<br>0001<br>0005<br>.0007 | 0002<br>0002<br>0021<br>.0011 | 0002<br>0003<br>0001<br>0029<br>.0013<br>.0044 | 0005<br>0010<br>0037<br>.0009 | 0006<br>0013<br>0039<br>.0002 | 0004<br>0010<br>0023<br>0050<br>0041<br>.0083 | 0012<br>+.0030<br>0067<br>0068 |

 $C^{\lambda}$ 

| C <sub>L</sub>                 | -2                                                | 0                                         | 2                                        | 4                      | 6     | 8                             | 12                           | 16                           |
|--------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------|-------|-------------------------------|------------------------------|------------------------------|
| 03<br>.20<br>.45<br>.71<br>.90 | .0005<br>.0007<br>.0032<br>0003<br>.0038<br>.0108 | .0006<br>.0008<br>.0013<br>.0031<br>.0029 | .0007<br>.0005<br>0006<br>.0035<br>.0016 | .0001<br>0017<br>.0007 | .0000 | .0000<br>0035<br>0066<br>0080 | 0003<br>0051<br>0155<br>0332 | 0003<br>0069<br>0241<br>0481 |

### Signed E.B. MacC. NATIONAL RESEARCH COUNCIL

Sheet 7 of 10

Date 7 June, 1950 A.M. 5684-5

LO. 5684A

TABLE II

Wing Alone R.N. =  $2.2 \times 10^6$ 

Negative a Range

C1

| CT A                           | <b>-2</b>                       | 0                                    | 2                                       | 4.                                        | 6                                         | 8                                         | 12                                        | 16                                        |
|--------------------------------|---------------------------------|--------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 03<br>.20<br>.45<br>.71<br>.90 | 001<br>002<br>003<br>003<br>002 | 0<br>001<br>002<br>002<br>007<br>006 | 001<br>.001<br>001<br>002<br>011<br>012 | 001<br>.002<br>.001<br>.000<br>014<br>016 | 001<br>.002<br>.002<br>.000<br>014<br>021 | 001<br>.002<br>.003<br>.000<br>019<br>025 | 002<br>.004<br>.005<br>.002<br>023<br>034 | 001<br>.006<br>.009<br>.006<br>022<br>035 |

| n   |
|-----|
| * 4 |
|     |

| CL                             | -2                                                 | 0                                         | 2                               | . 4 | 6                              | 8                              | 12                             | 16           |
|--------------------------------|----------------------------------------------------|-------------------------------------------|---------------------------------|-----|--------------------------------|--------------------------------|--------------------------------|--------------|
| 03<br>.20<br>.45<br>.71<br>.90 | -:0002<br>.0001<br>.0002<br>.0012<br>.0001<br>0010 | .0000<br>.0001<br>.0012<br>.0006<br>.0010 | 0002<br>.0015<br>.0000<br>.0016 |     | 0004<br>.0010<br>0011<br>.0016 | 0006<br>.0007<br>0021<br>.0010 | 0009<br>.0001<br>0042<br>.0012 | 0067<br>0005 |

Cy

| CL                             | -2                             | 0                            | 2                      | 4                            | - 6                          | 8                            | 12                                            | 16                           |
|--------------------------------|--------------------------------|------------------------------|------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------------------|------------------------------|
| 03<br>.20<br>.45<br>.71<br>.90 | 0002<br>.0006<br>0025<br>.0005 | 0001<br>0043<br>0037<br>0027 | 0005<br>-:0069<br>0077 | 0007<br>0090<br>0129<br>0067 | 0007<br>0089<br>0152<br>0101 | 0005<br>0095<br>0180<br>0167 | .0014<br>0004<br>0113<br>0266<br>0273<br>0474 | 0001<br>0136<br>0340<br>0375 |

## Signed E. B. Macc. NATIONAL RESEARCH COUNCIL Sheet 8 of 10

Date 7 June, 1950 A.M. 5684-5 LO. 5684A

TABLE III Wing with Tip Tanks R.N. =  $2.2 \times 10^6$ · Positive a Range

Cl

| CL                               | -2                                      | 0                                       | 2                                   | 4                                          | 6                                  | 8                                         | 12                                        | 16   |
|----------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|--------------------------------------------|------------------------------------|-------------------------------------------|-------------------------------------------|------|
| -002<br>.23<br>.49<br>.74<br>.91 | .000<br>003<br>004<br>005<br>002<br>004 | .001<br>001<br>001<br>002<br>005<br>006 | .000<br>.002<br>.002<br>.000<br>007 | ,001<br>.003<br>.005<br>.001<br>012<br>015 | 001<br>.004<br>.009<br>.005<br>010 | 001<br>.005<br>.008<br>.005<br>013<br>022 | 003<br>.006<br>.014<br>.008<br>006<br>023 | .009 |

 $C_n$ 

| Cr A                           | -2                                               | 0                                         | 2                              | 4                     | 6                    | 8                    | 12                           | 16                           |
|--------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------|-----------------------|----------------------|----------------------|------------------------------|------------------------------|
| 02<br>.23<br>.49<br>.74<br>.91 | 0001<br>.0001<br>.0004<br>.0012<br>.0011<br>0013 | .0005<br>.0005<br>.0004<br>.0005<br>.0014 | .0000<br>0007<br>0014<br>.0007 | .0001<br>0009<br>0030 | 0012<br>0038<br>0002 | 0016<br>0041<br>0019 | 0002<br>0027<br>0056<br>0054 | 0002<br>0032<br>0060<br>0069 |

Су

| CL                             | -2                                        | 0                                         | 2                                         | 4                                | 6                                                 | 8                     | 12                                              | 16                             |
|--------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|---------------------------------------------------|-----------------------|-------------------------------------------------|--------------------------------|
| 02<br>.23<br>.49<br>.74<br>.91 | .0006<br>.0004<br>.0023<br>.0024<br>.0026 | .0005<br>.0002<br>.CC17<br>.0023<br>.0017 | .0009<br>.0004<br>.0012<br>.0019<br>.0026 | .0006<br>.0006<br>.0039<br>.0046 | .0016<br>.0007<br>.0000<br>.0011<br>.0035<br>0045 | 0002<br>0029<br>.0005 | .0034<br>.0024<br>.0006<br>0085<br>0222<br>0167 | .0042<br>.0019<br>0144<br>0225 |

Signed E. B. MacC.

# NATIONAL RESEARCH COUNCIL Sheet 9 of 10

Date 9 June, 1950 A.M. 5684-5 L.O. 5684A

TABLE IV

Wing with Tip Tanks R.N. =  $2.2 \times 10^6$ Negative a Hange

C1

| C <sub>L</sub>                 | -2                                      | 0                                       | 2                                 | 4                                  | 6                                         | 8                                   | 12                                        | 16                                 |
|--------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|------------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------------|------------------------------------|
| 02<br>.23<br>.49<br>.74<br>.91 | .001<br>002<br>005<br>007<br>006<br>004 | .000<br>002<br>002<br>004<br>007<br>006 | .000<br>.001<br>002<br>011<br>010 | 001<br>.002<br>.005<br>.001<br>011 | 002<br>.003<br>.006<br>.001<br>015<br>017 | .000<br>.003<br>.008<br>.003<br>013 | 001<br>.007<br>.008<br>.007<br>016<br>022 | 004<br>.004<br>.012<br>.005<br>020 |

| ļ                              | <b>+</b> • • • • • • • • • • • • • • • • • • •   |                                           | Cr | Ì                      |                               |                               |                      |                      |
|--------------------------------|--------------------------------------------------|-------------------------------------------|----|------------------------|-------------------------------|-------------------------------|----------------------|----------------------|
| C <sub>L</sub>                 | -2                                               | 0                                         | 2  | 4                      | 6                             | 8                             | 12                   | 16                   |
| 02<br>.23<br>.49<br>.74<br>.91 | 0001<br>.0001<br>.0009<br>.0014<br>.0006<br>0004 | .0005<br>.0006<br>.0010<br>.0009<br>.0011 |    | .0001<br>.0000<br>0015 | .0001<br>0002<br>0019<br>0004 | .0001<br>0005<br>0026<br>0009 | 0001<br>0012<br>0043 | 0007<br>0025<br>0065 |

| -                              | -                                                 |                                | CA                            |                               |                                                |                       |                       |                       |
|--------------------------------|---------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------------------------------|-----------------------|-----------------------|-----------------------|
| CL                             | -2                                                | 0                              | 8                             | 4                             | 6                                              | 8                     | 12                    | 16                    |
| 02<br>.23<br>.49<br>.74<br>.91 | .0005<br>.0001<br>0008<br>.0009<br>.0004<br>.0045 | .0004<br>0032<br>0042<br>.0002 | .0005<br>0040<br>0099<br>0012 | .0006<br>0044<br>0078<br>0038 | .0018<br>.0006<br>0058<br>0118<br>0045<br>0086 | .0009<br>0057<br>0147 | .0022<br>0050<br>0193 | .0043<br>0028<br>0221 |

Signed E. B. MacC.

NATIONAL RESEARCH COUNCIL

Sheet 10 of 10

Date 7 June, 1950

A.M. 5684-5

LO. 5684A

TABLE V

Wing Alone R.N. = 3.3 x 10<sup>6</sup>

Positive a Range

c<sub>1</sub>

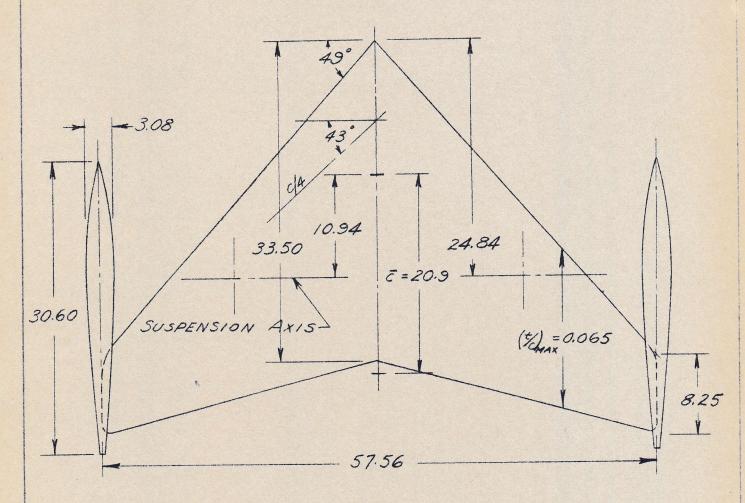
| C <sup>L</sup>          | -2                        | 0                          | 2                    | 4                            | 6                            | 8                    | 12                           | 16                           |
|-------------------------|---------------------------|----------------------------|----------------------|------------------------------|------------------------------|----------------------|------------------------------|------------------------------|
| 01<br>.18<br>.28<br>.38 | .001<br>001<br>002<br>005 | .000<br>001<br>.000<br>001 | .000<br>.001<br>.001 | .000<br>.001<br>.003<br>.003 | .000<br>.002<br>.004<br>.005 | .000<br>.003<br>.005 | .000<br>.005<br>.008<br>.011 | .000<br>.007<br>.011<br>.014 |

 $c_n$ 

| C <sup>L</sup>          | -2                               | 0     | 2                             | 4            | 6    | 8            | 12           | 16                           |
|-------------------------|----------------------------------|-------|-------------------------------|--------------|------|--------------|--------------|------------------------------|
| 01<br>.18<br>.28<br>.38 | .0001<br>.0001<br>.0002<br>.0004 | .0000 | .0000<br>0001<br>0003<br>0005 | 0003<br>0003 | 0008 | 0005<br>0010 | 0008<br>0015 | 0004<br>0011<br>0020<br>0032 |

CA

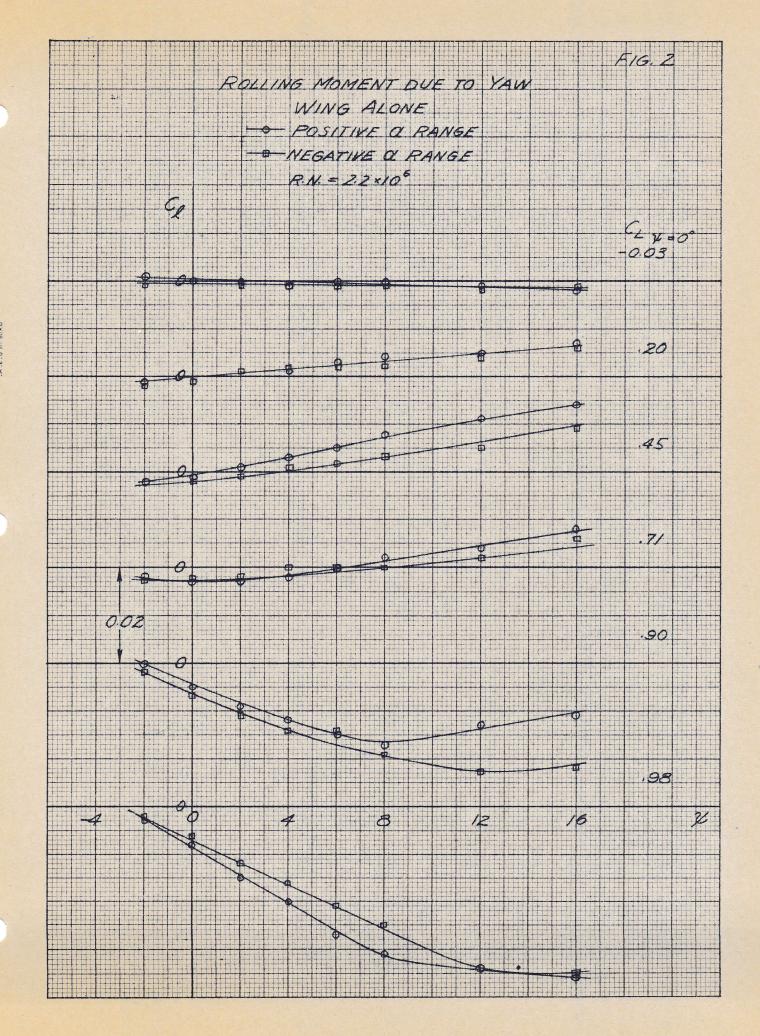
| CL                      | -2                              | 0     | 2     | 4                             | 6    | 8            | 12   | 16    |
|-------------------------|---------------------------------|-------|-------|-------------------------------|------|--------------|------|-------|
| 01<br>.18<br>.28<br>.38 | 0001<br>.0003<br>.0006<br>.0008 | .0001 | .0000 | .0000<br>0001<br>0002<br>0006 | 0002 | 0002<br>0005 | 0001 | .0001 |

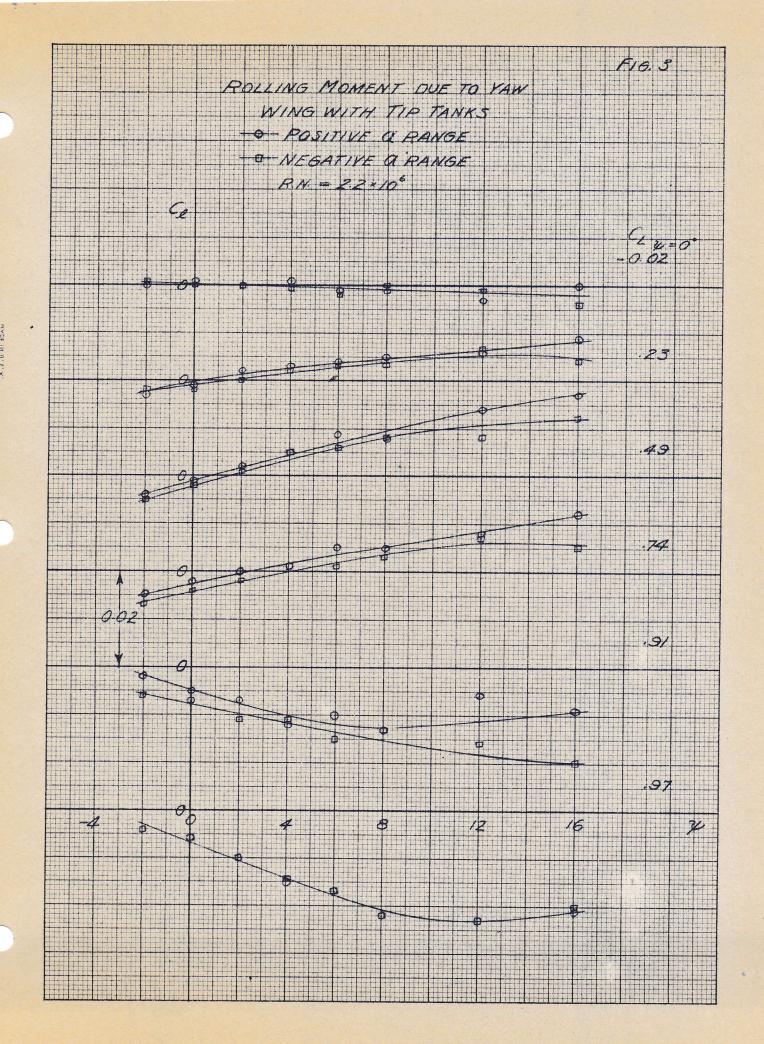

NATIONAL RESEARCH COUNCIL Signed.

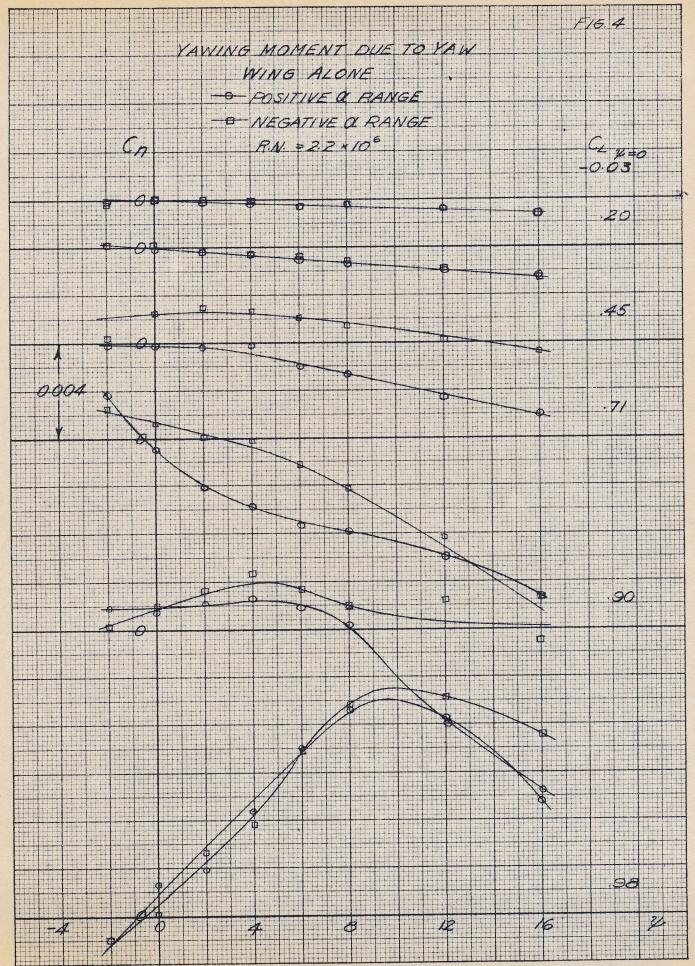
Sheet of

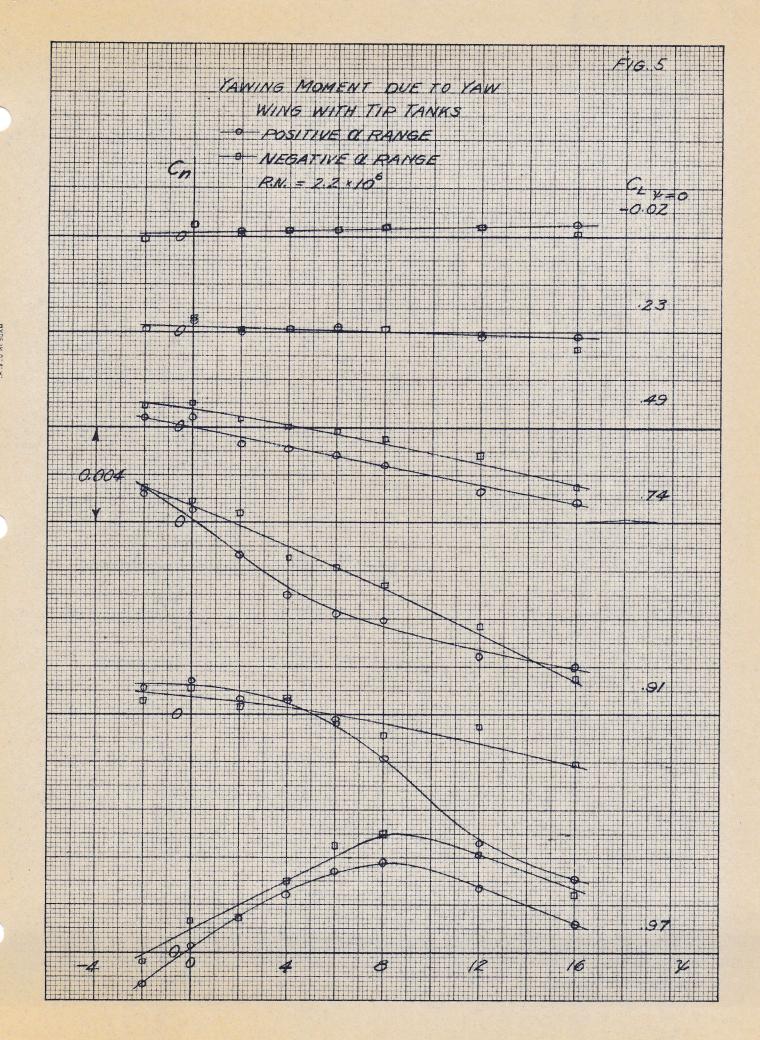
Date

LO.


FIG 1

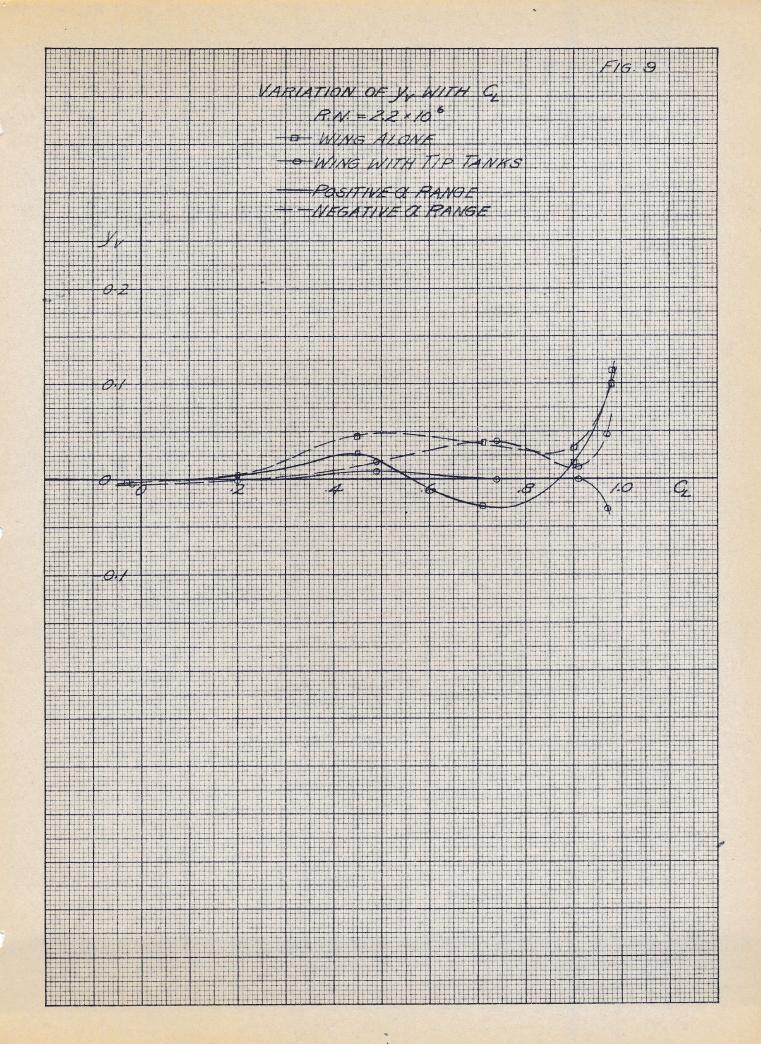




SCALE - 1=10"

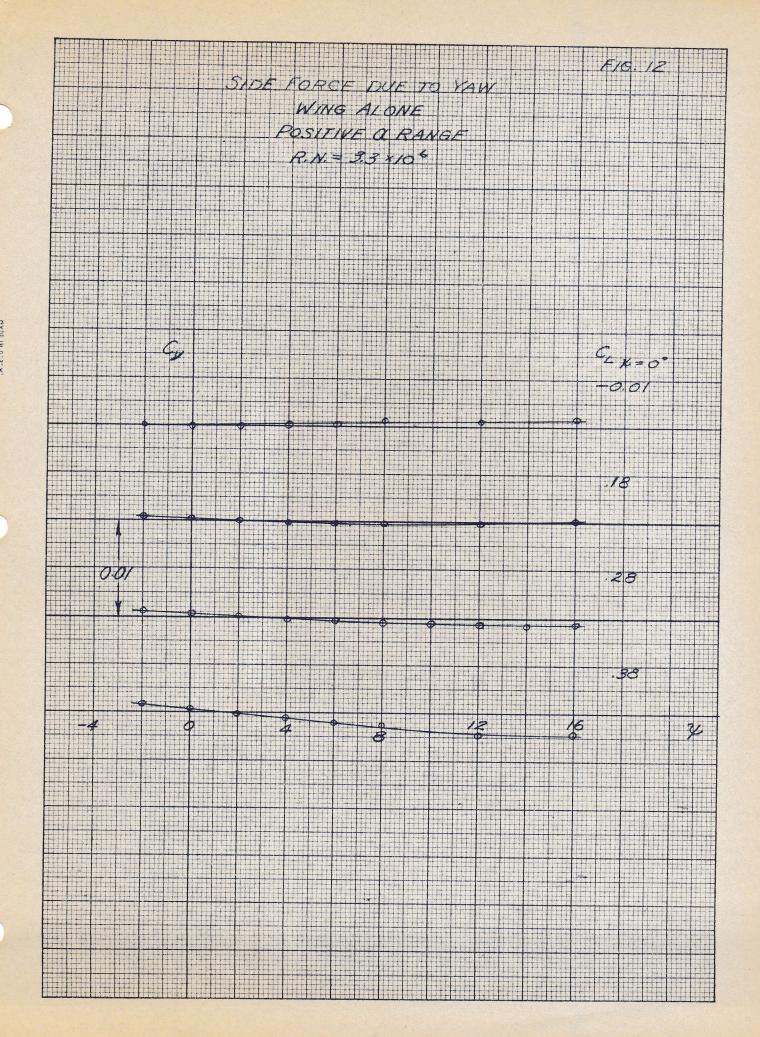

AREA S = 8.34 SQ. FT. MEAN CHORD & = 5 = 1.75 FT. TAPER RATIO 1 = 0.246 ASPECT RATIO A = 2.76

MEASURED MODEL DIMENSIONS








KEUPPEL & ESSER CO., N. Y. NO. 259-111. 10 X 10 to the ½ inch. 5th lines accented.

KEUPPEL & ESSEN CO., N. Y. NO. 359-111.



KEUNTEL & ESSER CO., N. V. NO. 389-11 10 X 10 to the % inch. 5th lines scrented. MADE IN U.S. A. KRUFFEL & ESSEN CO., N. V. NO. 358-17 19 X 10 to the 14 Inch. 5th lines acretical. NASE IN U.S.A.

