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PREFACE

This report presents a simple method by which aero-
dynamic drag effects can accurately be taken into ac-
count in the prediction of model rocket peak altitudes.
With thisdata, altitudes can be determined for any roc-
ket using any of the Estes motors (including 2 or 3 stage
vehicles and cluster-powered birds). Inaddition, flight
times can be easily found so that optimum engine delay
times can be selected.

Using this simple method for including aerodynamic
drageffects, many interesting experiments and research
projects can be initiated which would have previously
been too laborious to analyze. Also, a good basic un-
derstanding of the principles of aerodynamics and the
aerospace sciences can be obtained by performing the
simple drag experiments suggested at the end of this
report.
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INTRODUCTION

DISCUSSION OF DRAG

The article on Rocket Math which appeared in the
June, 1964 issue of Model Rocket News (Volume 4,
Number 2) pointed out, among other things, the vast
difference between the potential height amodel rocket
could reach and the much lower height to which it would
actually climb due to the flight retarding forces of mil-
lions of air molecules that bombard the frontal surface
of a model rocket during each second of forward flight.

These millions of impacts, of course, constitute the
effect more commonly known as "aerodynamic drag" on
a rocket or more simply as just "drag". Dragon any ob-
ject has been found to follow this law:

D= CDA%9V2

where

D is the drag force.

Cp isadimensionless "aerodynamicdrag coef-
ficient" that depends upon the shape and
surface smoothness of the object.

A is the reference area of the object (for mo-
del rockets we use the cross sectional area
of the body tube as the reference).

9 is the density of the medium through which
the object is moving (submarine designers
use the density of water in theirdrag com-
putations, whereas model rocketeers use
the density of air). The density symbol "§"
is the greek letter RHO pronounced ROW.

and

\% is the velocity of the object.

The full importance of drag has yet to be realized by
most model rocketeers. It is hoped that through the
use of the altitude prediction method presented herein
that a more complete understanding of its effects will
be acquired by all.



In the June, 1964 Rocket Math article (reference |)
it was pointed out that "typically drag will reduce the
peak altitude of a shortened Astron Streak with a
|/2A .8-4S engine aboard from a theoretical drag free
1935 feet to an actual 710 feet". What this simply
means is that merely due to the effect of air the altitude
has been cut fo less than half. The big question is,
"Why is this effect so great and what is happening to
the rocket to cause such a difference"?

To better understand the effects of the atmospheric
forces that retard the forward motion of the rocket (we
are talking about "drag" again) let us consider the fol-
lowing example . Suppose we have aone inch diameter
rocket traveling at 100 ft/sec. We can determine the
number of air molecules which collide with our rocket
each second by using Loschmidts number, which is the
number of molecules in a cubic centimeter of gasunder
standard conditions (temperature of 59° F and pressure
of 14.7 PSI). Any basic physics or chemistry book gives
this number; see reference 2, page 196 for example.

It turns out that during each second of flight time
our 100 ft/sec rocket hasto push itsway through approx-
imately 400,000,000,000,000,000,000,000 molecules
that lie in its path. (Scientists and engineers usually
write out such large numbers in the form 4 X 107,
which means 4 followed by 23 zeros).

Even though moleculesare very small, this extremely
large number of them can add up to adrag force of about
| ounce acting continuously at a speed of 100 ft/sec.
Since drag is proportional fo the square of the velocity*
we would then have 4 ounces of drag at 200 ft/secand
9 ounces of drag on the rocket at 300 ft/sec (approx-
imately 200 miles per hour).

Fortunately, the full effect of these moleculessitting
in the path of our rocket can be avoided by good streamn-=
lining. Inthiswaymost ofthemolecules are compressed
in layers which tend to flow smoothly around the nose
and body tube as the rocket passes them; relatively few
molecules are really rammed head on.

% The square of a number is obtained by multiplying it
times itself.

The aerodynamic drag coefficient (Cp) is ameasure
of how easily a given shape goes through all those
molecules. For example, @ cube traveling flat side for=
ward has a Cp of |.05, a marble has a Cp of .47, a
streamlined teardrop shape has a Cp of .05, andatear-
drop with 1/3 of its length removed at the trailing end
has a Cp of .| (see reference 3). The product of the
drag coefficient Cp) and the frontal area (A) is com-
monly referred to as the Drag Form Factor (CpA) of a
body . Bodies with identical drag form factors will have
identical drag values atany given speed. Thus, a cube
having a one inch length has a frontal area of | inch
and a drag form factor of

CpAcupe = (1:09)(1 inch2) = 1.05 inch?

Our marble would require a diameter of 1.69 inch
(its frontal area would then be 2.13 inch4) in order to
have a drag form factor identical to the cube.

CpAMarble = (:47)(2.13 inch2) = 1.05 inch?

A streamlined teardrop that would have the same
amount of total drag as our | inch cube would require
a diameter of 5.17 inches, corresponding fo an area of
2| square inches, to match the cube's drag form factor.

= (.05)(21 inch?) = 1.05 inch2
GO L e

CpAreardrop ”

Lastly, in order to have the same amount of drag as
the cube our teardrop with /3 of its trailin end cut
off would require a frontal area of 10.5 inch” resulting

in a diameter of 3.66 inches.

CpAchopped = (1(10:3 inch2) = 1.05 inch?

Teardrop

Realizing that the deceivingly small cube has the same
amount of drag as the large teardrop should make ob-
vious the importance of streamlining on model rockets.

DISCUSSION OF
THE BALLISTIC COEFFICIENT

There are several factors that affect the altitudes our
rockets will reach. These are: the drag coefficient
Cp), the frontal area of the rocket (A), the rocket
weight (W), the amount of propellant burned off during
thrusting (Wp), the type of motor used (B3 down fo
|/4A), and even the temperature of the air, and the al-
fitude of the launch site.

Teardrop

COMPARATIVE SIZES OF

""Chopped'' Teardrop

Marble Cube




The charts of this report were made possible by com-
bining several of these variables into one new variable
called the ballistic coefficient B (greek letter BETA)
whichis the ratio w

CoA  (rocket weight divided by the

drag form factor (CpA), where the frontal area (A) is
based on the body tube cross section area). The bal-
listic coefficient B is widely used by aerospace engi-
neers as a trajectory parameter for space vehicles that
are re-entering the atmosphere. It is also used byrifle
designerswho have to determine the best shape andweight
of a bullet to use to obtain a given range and striking
power .

A spacecraft with a high ballistic coefficient will
come through the atmosphere faster than one with a low
ballistic coefficient for a given set of initial re-entry
conditions. A rifle bullet with a high ballistic coeffi-
cient will not slow down as fast as one with a lower
ballistic coefficient. Using the charts of this report
you will soon discover that for a given rocket weight
and motor type that our models will reach higher alti-
tudes with high ballistic coefficients as compared to
lower ones.

SAMPLE PROBLEM

Assume we have a rocket that |) weighs | ounce in-
cluding motor, 2) is powered by an A.8-4motor, and
3) uses a BT-20 body tube. For the present an aero-
dynamic drag coefficient of Cp = .75 shall be used.
G. H. Stine's Handbook of Model Rocketry (Reference
4)presents thisvalue onpage 94. He also explains why
it is considered accurate and valid. Experiment 2 on
Drag Coefficient Measurement will enable you to make
your own decisions as to how valid a Cpy of .75 is.*

Using the Cp of .75 and a BT-20 body tube we look

at Figure | to find that the drag form factor CHA = .32.

The next step is to compute the ballistic coefficient to
be used during powered flight. During the thrusting
phase the average weight of the rocket should be used.
The average weight, of course, equals the initial weight
(W) minus one half the propellant weight (I/2Wp).
Figure 5 containsall the data for A type motors and states
the value of 1/2Wp as .0675 ounces. Thus, the ballis-

tic coefficient to be used during thrusting is:
_ WI-Wp _ 1.0-.0675
B="toA" =32

_ 9325 _ ounces
B="32 =292y
From Figure 5 we find that for a ballistic coefficient
(B) of 2.92and aninitial weight (W) of 1.0 ounce that

Burnout Altitude (Sg) = 150 feet
and:

Burnout Velocity (Vg) = 310 Ft. per Sec.

During coasting we should use the empty weight of the

We also hope that since draginformation can now be
utilized ina simple way that its new usefulness cre-
ates more interest on the subject of drag and that
thisnew interest, inturn, stimulatesmany more tho-
rough aerodynamics research projects.

rocket (initial weight (W|) minus all the propellant
(Wp)) to determine a more realistic ballistic coefficient
(B). This will have a value

Wi-Wp _ 1.0-.135
B= = gy

_ .865 _ ounces
B=+"g3=2T11 5 02

Figure 8 has all coasting data. Note that the coast-
ing plots are independent of motor type, that is, Fig-
ure 8 is good for all coasting model rockets. Thus, for
a coasting ballistic coefficient of 8= 2.7l and a burn-
out velocity of Vp = 310 ft/sec we find that

Coast Altitude (S¢) = 550 feet
and:
Coast Time (t¢) = 5.0 Sec.
(From burnout to maximum height)

Note that ejection would have occurred at 4 seconds,
however.

The total altitude that arocketwill reach, of course,
is the sum of the altitude gained while thrusting (Sp)
and the altitude gained during coasting (Sc), or

STotal = SB+Sc = 150+550 = 700 feet

That is all that is involved in making a complete peak
altitude calculation.

Does a question arise in your mind about accuracy
of the method? Can something thissimple be any good?
Those of you who have that June, 1964 issue of the Mod-
el Rocket News (reference |) can check that the alti-
tude found for this same identical rocket without con-
sideringdragwas 2600 feet (greater than a 300% error)
and with drag was 750 feet.

You may also wonder why the 1964 calkeulations showed
that an altitude of 750 feet was reached, whereas our
new chart method shows it only reached 700 feet. This
is due toneglecting in the 1964 calculations, the seem-
ingly small amount of propellant being burned off. If
you go through the sample problem again and don't in-
clude any weight loss you will find the rocket goes up
to 750 feet just as the 1964 calculations said it would.

Now let's take a quick look at some of the effects
"streamlining" can have for this same rocket. Sup-
pose we have two people build thissame rocket. Bill's
isunpainted, unsanded, and the finsare square. Carl's
bird, on the other hand, has a beautiful smooth paint
job, is fully waxed, and the fins have a nice stream-
line airfoil shape. For comparison purposes let's assume
Bill's aerodynamic drag coefficient has increased 20%
over the Cp = .75 we previously used (Bill's Cp now
equals .9) and Carl's drag coefficient has been reduced
by 20% (Carl's Cp now equals .6).

Goingthrough the same steps of the sample problem
you will find Bill's rocket will reach 640 feet while
Carl's will reach 790 feet.

As one becomes familiar with the method in this
report he finds many more interesting aspects of aero-
dynamics to consider. It is very easy to investigate the
effect on performance of any of the variables by just
computing altitudes for various engine types, heavier




and lighter rocket weights, and different valuesof drag.
With this kind of approach one soon gainsareal under-
standing of these previously abstract principles.

"STREAMLINING" - ITS EFFECT ON DRAG \

- -

Drag Coefficient (Cp)
Thrusting Ballistic Coefficient (8)
Burnout Altitude (Sp)

Burnout Velocity (VB)

Coasting Ballistic Coefficient (8) 2.26 3.39
Coast Altitude (S¢) 493 feet 640 feet
Coast Time (tc) 4,72 Sec. 5.45 Sec.

Total Altitude (5B+S¢) 640 feet | 190 feet

‘ CLUSTERED ROCKETS APPLICATION

The charts can also be used for any identical type
motors clustered inastage by making the following mod-
ifications:

During thrusting use the Vp and Sp graphs with

Wi = Actual Weight = Wactual
1= Number of motors in cluster N

= Wactual - N(1/2 WPp)

During coasting use:

and:

_ Wactual - N(Wp)
p="20on

Nothing else is required.

As an example, let us assume we have an Astron
Cobra powered by a cluster of three B.8-6 motors. It
weighs 6 ounces including motors and payload and is
made with a BT-60 body tube. Again assume G. H.
Stine's Cp of .75 is valid (reference 4).

Now:
Wi= _ Wactual = 6 _ 2 ounces
Number of motors 3
and

6-3(.1106)
1.58

p= Wactua)- N(1/2Wp) _

p- 6-.3318 Lse_ssg —3.58

1.58 1.5
Figure 3 then gives:

SB = 175 feet
vp= 233 Ft/Sec

During coasting the rocket will have:

Wactual - NOWP) _ 6-3(.2212)
B= __a_cs_%l_D_r— =T

_ §-.6636 _ 5.3364 _
p= = "1rg =3V

From Figure 8 we find that for Vg = 233 ft/sec and
B= 3373

Sc = 450 feet
tc = 4.8 Sec.
and our fotal altitude is:

Stotal = sgt+Sc = 175+ 450 = 625 feet

Note that our choice of six second delay motors would

allow the Cobra to be tracked to its peak altitude,

whereas using four second delay motors we would have

ejection occurring somewhat before the peak altitude

was reached--thus spoiling our altitude measurement .
S S

THE EFFECT OF LAUNCH ALTITUDE
AND LAUNCH TEMPERATURE VARIATIONS

Our basic drag equation D = CpA 1/29 V2 shows
that the drag force (D) is among other things propor-
tional to air density (). Density of the air is both a
function of altitude and temperature. Figure 9 presents
a correction factor (K) for density that is based on the
tabular data presented on page 92 of G. H. Stine's
Handbook (reference 4). This factor (K) can fortunately
be included in the ballistic coefficient (B) as follows:

W
B= A%
Altitude calculationsare performed just as described be-
fore with the exception of thissingle modification. The
reason it can be included right in the ballistic coeffi-
cient will become apparent fo those who follow the
derivation of the motion equations.
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FIGURE 9
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GENERAL EQUATIONS
OF MODEL ROCKET MOTION,
TERMINOLOGY, AND ASSUMPTIONS

The equations of motion are presented here for those
rocketeerswho are interested in obtaining the complete
time history of their rocket's motion, for those with an
interest in mathematics, and for those who are curious
as to the origin of the charts.

A. THRUSTING

|. Altitude as a function of time

s=1 w 1n cosh gw——i -1) CpAl/2% ;
g cpAl/2¥ W w

2. Velocity as a function of time

Note that when time (t) is the burnout time
(tp) that the altitude (S) becomes the burn-
out altitude (Sp) and the velocity (V) be-
comes the burnout velocity (Vp)-

B. COASTING

|. Thecoastaltitude (S¢) is the distance gained
between the time of burnout and the fime
when the rocket reaches its peak .

Sy Liiweo = CpA1/2% Vp2
Sc= 3¢ CpAl1/29 “‘{1* W

2. The coast time (tc) is the time it takes the
rocket to slow down tozero velocity (V=0).
That is, the peak is reached and the rocket
will now begin to fall back to the ground.

c=7g |CpA1/2? m

3. Additional altitude gained as a function of
time from burnout.

In cos{g “QD-‘%%B——’ (tc - t}

4. Velocityasa function of time from burnout

= CDA1/2 3
V= qcDAl/zf ta.n[g _D_‘%__ (te t;}

C. SECOND AND SUBSEQUENT STAGES

= 1 w
BT g CpAl/2%

|. Altitude gained asa function of time from
the previous stage's burnout .

_1 w cpa1/2¥ (T.
b g oo PR G
CoAl/2P _ 1 CpAl/2? (L.
o R sl P
W
2. Velocity as a function of time
- W T cpa1/2f (T_
Va = ‘anl/zi—’ (w 1) ta“h{g‘ w W l)t

DA1/2P VBy

+ ta.nh‘1
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Again not
time (tg)

e that when time (1) is the burnout
that the altitude (Sp) becomes the

sgcond (or third) stage altitude increment
(°Bg) and the velocity (Vo) becomes the

second (o

VB2).

TERMINOLOGY

r third) stage burnout velocity

The terminology used is as follows:

sinh

cosh
tanh
tanh” |
In

cos
tan

ta n_

Cp

\%

Subscript terminology:

B

C

= .002378 T =.0765

hyperbolic sine
hyperbolic cosine

hyperbolic tangent

arc hyperbolic tangent

natural logarithm

cosine

tangent

arc tangent

weight of rocket in pounds

(a) use average weight during
thrusting

(b) use final weight during
coasting

aerodynamic drag coefficient

reference ared in £t 2 for professionol
rocketry or in 2 for model rocketry
sea level density of air

1b-sec?2 b _ goounces

it3 ft

average thrust in pounds for professional
rocketry or ounces for model rocketry
earth's grovitaﬁoncl constant
= 32.174 ft/sec?

time in seconds

altitude in feet

velocity in feet per second

refers to burnout
refers fo coasting
refers to first stage

refers to second stage




——— ASSUMPTIONS

The assumptions used in deriving these equationsare
essentially the same as used in the June, 1964 Model
Rocket News (reference |) article. In review:

. Weight is assumed to be constant during thrust-
ing (an average value is used).

2. Drag is proportional to V2

D=CpAl2y V2 (which is quite reasonable
up to 700 ft/sec.)

3. Thrustisconstantduringburning (againan aver-
age value is used):

Total Impulse

T= Burn Time

4. The rocket is launched straight up and no cross-
wind or turbulence exists, so the flight con-
tinues straight up at zero angle-of-attack .

5. Thrust due to smoke delay burnoffisnegligible.

6. The overall drag coefficient does not increase
during the coast phase due to base drag (i.e.
the smoke delay burnoff cancels it).

7. Additional weight losses due to smoke delay
burnoff are neglected.

8. Atmospheric density is uniform and does not
vary from the launch pad value.

9. Second and subsequent stages have no time de-
lay for ignition and buildup to the average
thrust value of the next stage. An example of
the assumed time history is shown:

/' First Stage

Second Stage
f

Thrust

Time

GENERAL EQUATIONS CONVERTED FOR MODEL
ROCKETRY APPLICATIONS

The basic equations are converted for model rocket-
ry calculationuse by first substituting the known values
for the constants § and g. Also since wedeal primari-
ly with weights in ounces instead of pounds and frontal
areas in square inches instead of square feet we use the
additional conversion factors:

| pound = 16 ounces
| square foot = 144 square inches

We can also shorten the repetitive calculations con-
siderably by precomputing the ballistic coefficient (8)

15

B= W_in ounces
CpA  Square inches of frontal area

and the drag-free acceleration (a)

a= (%- ) in g's of acceleration

(Note that the drag-free acceleration (a)isnon-dimen-
sional so both thrust (T) and weight (W) must be in ounces.

With these modifications the A, B, and C equations
for altitude and velocity reduce to the following:

A. THRUSTING

I. Altitude as a tunction of time

_ Va_
S =235.26 8 1n cosh [36981 5 t:]
2. Velocity as a function of time

V = 87.0 (8 [ tanh [36981—% t}

Again note that when time (t) is equal to
the motor burnout time (tg) that the alti-
tude (S) equals the burnout altitude (Sp)
and the velocity (V) equals the burnout
velocity (Vp).

B. COASTING

I.  The coastaltitude (Sc) is thedistance gained
between the time of burnout and the time
at which the rocket reaches its peak.

2
= VB!
Sc= 117.63 B8 In [1+7659.3ﬁ

2. Thecoast time (tc) is the time it takes the
rocket to slow down to zero velocity (V =
0). That is, the peak is reached on the
rocketand will now begin to fall back down.

AW
te = 2.7041 | tanl [mﬁm—_]

3. Additional altitude gained as a general
function of time from burnout.

S = Sc+235.26 B In cos {.36981 (_tc_t)_}
B 5

4. Velocity as a general function of time from
burnout.

v = 87.03 tan{.36981 (tc -t)}
o { e

C. SECOND AND SUBSEQUENT STAGES

Altitude gained as a function of time from
burnout of the previous stage.

- JZ]
Sp= 235.26 8 1n {cosh [36981 =t
VB

= o e &
* §7.0(8 [a Sinh [36981 m—t}

2. Velocity of thesecond (or third) stageas a



function of time from burnout of the pre-
vious stage .

_ {4 tann? —ﬁﬁ’vB
VB, 87.0[§Etanh{.36981 'Ft+tanh 570 a}

Again note that when time (t) is equal to
the burnout time (tg) for this stage that the
altitude (Sp) becomes the second (or third)
stage altitude increment (°B9) and the vel-
ocity (V2) becomes the second (or third}
stage burnout velocity (VBp).

HOW TO ANALYZE
TWO OR THREE STAGE ROCKETS

In order to predict altitudes for multiple stage roc-
kets one must resort to using equations (Cl) and (C2).
A book of mathematical tables(such as reference 5)
must be obtained in order to evaluate the hyperbolic
sines, cosines, tangents and arc tangents (perhaps one
of your teachers can help you the first time through).

The first stage burnout velocity and altitude can be
found using the charts in the usual way. The ballistic
coefficient (B) anddrag-free acceleration (a) are then
calculated for the second stage. Equations (Cl) and
(C2) use these values in conjunction with the burnout
velocity of the first stage (VB|) and the motor burn time
of second stage (tg) to obtain the altitude gained during
second stage thrusting\/(SBz) and the new velocity at
second stage burnout (VBj).

If it is just a two-stage vehicle it will now coast to
the peak; and so the coasting chart data can be utilized
as usual .

A three-stage vehicle on the other hand has to make
use of equations (Cl) and (C2) again to find the third
stage burnout velocity and the increment of altitude
gained during third-stage thrusting. The coastaltitude
and time can then be found as a function of the ballis-
tic coefficient (as based on the empty weight of the
third stage) and the third stage burnout velocity.

Needless to say, it is important touse weight values
in your calculations that properly reflect the effect of
the booster stages falling away after they burn out.

The reason that the second and third stage data had
to be calculated, instead of just simply read from a
chart, is that there are too many variable factors.

You will notice that four variables affect the ve locity
and altitude gained during second or third stage thrust-
ing: 1) type of rocket motor, 2) weight of rocket, 3)
drag of rocket, and 4) initial velocity due to previous
stage. Single-stage rockets only have three variables
that effect velocity and altitude: 1) type of rocket
motor, 2) weight of rocket, and 3) drag of rocket.
Plotting each motor type as a separate graph for single-
stage rockets essentially reduces the number of vari-
ables from 3 to 2, thus lendingitself to plotting on twe-
dimensional graph paper. Using this same procedure
for multiple-stage rockets still leaves us with trying to

plot mathematical functions of three variables on two-
dimensional graph paper.
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APPENDIX 1

DISCUSSION OF CALCULTUS

Calculus is the branch of mathematics which allows
one to analyze movement and change. Complex mo-
tions can essentially be broken into small increments,
and the changes occurringat each instant can be inves-
tigated.

Prior to thisreport, model rocket altitudeswith aero-
dynamic drageffects were frequently determined by using
small time interval step-by-step computation methods.
At a given velocity the drag can be computed and sub-
tracted from the thrust to find the net force acting on
the rocket. This, in turn, gives the net acceleration
for that time period. The assumption is then made that
this acceleration will be constant for the next short time
period. Next the increase in velocity due to the as-
sumed constant acceleration is computed and the entire
process is ready to be repeated. Wedo know, however,




that the velocity and drag do not take small jumps after
each time period but in reality are smoothly increasing
during thrusting, and are smoothly decreasing during
coasting.

The step-by-stepmethod thus introduces slight errors
in the predicted altitude. Taking smaller time periods
increases the accuracy. With calculus the time peri-
ods are infinitely small and as a result the velocity and
drag become the perfectly smooth variables with time
thatwe know them to be. A very well illustrated, in-
teresting, and simple to understand layman'sdescription
of calculus is given in Chapter 5 of the "Mathematics"
volume of the Life Science Library (reference 6). This
chapter helps very much to convey the importance of
calculusas a fundamental tool in today's modern world
of spacecraft and electronics.

The following two sections of the report can be by-
passed with no loss in continuity. These detailed de-
rivations of the thrusting and coasting equations for
model rockets are presented primarily for those persons
with the prerequisite background in the calculus oper-
ations of '"differentiation" and "integration", who
desire a more complete understanding of where the
equations for the altitude prediction charts originate .

IE)RIVATION OF THE THRUSTING EQUATIONS

The equation of motion for the rocket during thrusting is
obtained by applying Sir Isaac Newton's first law, which
can be written as:

F=ma (1)
Where: F = The summation of all external forces
applied to the rocket.
m = The mass of the rocket.
and: a = The acceleration of the rocket.

A free body diagram of the rocket with the proper forces
is shown. D=CpA1/29V2

+ S,V,a

Let us, for convenience, choose the displacement S, the
velocity V, and the acceleration a, as positive in the up-
ward direction. Since we are interested only in the one-
dimensional upward trajectory of the rocket we eliminate
all possible forces acting in any other direction than S.

The following forces are acting on the rocket:

1. THRUST (T)

The thrust is considered tobe constant from ign-
ition to burnout. It is easily seen that the thrust is
acting in the positive direction and thus is a positive
force.

2. WEIGHT (W)

This is the earth's gravitational field acting on
the mass of the rocket. We assume that the weight
loss from ignitiontoburnout is small enough so that
taking the average weight during this period gives
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sufficient accuracy. Thus, the weight will be a con-
stant and, of course, can be seen to be acting in the
negative direction.
3. DRAG (D) D=CpAl/29V2
The aerodynamic drag is assumed to hold to the
V2 law for all flight speeds. It too is a negative

force.
Thus, equation (1) becomes:
T-D-W = ma (2)

From physics we know the mass (m) is equal to the weight
(W) divided by (g) the acceleration due to gravity.
m=W
g
Substituting the values of m and D into equation (2) we
obtain:
i 2_yw=W
T-CpA V29 Ve-W= g a

For a given rocket the term CpA 1/2f is a constant.
Instead of carrying all these terms through the derivation
we call it the constant K.

K=CpA1l/2¢
Thus, our equation becomes:
T-KVZ-w= % a

Now the acceleration (a) is the rate of change of velocity
with respect to time. In calculus this is written as:
a=gt—v and is called the first
derivative of veloeity.
our equation now becomes:
T-KvZ-w=W dV
g dt (3)
This is called a first order differential equation. Luck-
ily, with a bit of rearranging it can be integrated.

Multiplying both sides by T_“‘}fKV

We obtain:
dt=W dv (4)
g (T—W)—KV2

Next we integrate both sides:
dt from an initial time (t,) to some time (t), and dV
from an initial velocity (V) to velocity (V) at time (t).

thus: ¢ v 1
at=¥ J——g“
g J(T-W)-KV
to Vo

The more difficult right-hand side can be reduced to the
standard integral form given on page 29 of reference 5.
This is accomplished by making the following substitutions:

a2=T-W
b2=K
U=V

Reference 5 gives the solution as:

. ta.nh_1 L.
a2-b2U2  ab a
When applied to our equation we find that:

. \%

tt =W —__L tanh‘l( K V)
; g T-W K T-W
o Vo

=Wl W 1R
tto—g\mtanh (—W \) : mtam W Vo

Now at ignition time t,=0. We will have the rocket's
velocity Vo =0. Upon substitution of these values we get:



N w——"
t=3 [TWIK tanh (ﬁv) (5)

since the value of tanh‘l(O) is zero.

We now find it convenient to define a constant 8 called
the density ballistic coefficient

=f_w =ﬂ
Bo=CpA1/29 K

Where K is the constant previously defined. Note that
the "density ballistic coefficien " must be distinguished
from the "ballistic coefficient defined in the introduction
and subsequently used throughout the report.

Seeing the 'density ballistic coefficient'" terms appear-
ing ineach of the final equations summarized earlier should
give one a clue as to why the density correction factor due
to temperature and launch altitude variations can be includ-
ed right in the "ballistic coefficient". This correction
factor is simply the ratio of density at any altitude and
temperature (PH,T) to the sea level density (f).

Thus, the actual density is simply: PH,T=(?L"1)P

)
where (fﬂl) is the correction factor for air
f density presented in Figure 9.
For values of density other than sea level we will have
B, = " _ w L 5
°” CpA 1/29ur ~ CpA 1/2 (?B.T ) 1/29
=5

Where our regular B includes the density correction term
in a mathematically acceptable manner.

- I B
Cot(fse)
We also find it convenient to use the drag free accelera-
tion in g's
ag=3= 1
Note that we now use the subscript """ for the drag free
acceleration as a means for distinguishing it from the true

rocket acceleration term (a) as used in Newton's basic
motion equation F = ma.

and B, can be utilized by working with the constants
of equation (5). These constants are re-arranged in the
following manner:

also: Ko = W

[

Bo 2
|
.BO a0

thus, equation (5) becomes:

t=lV'B_.-0t hl r——v (6)
el ag an ﬁoao

Noting that the identity form M = tanh_l(N) means that
N = tanh(M) gives us a method by whichwe can obtain veloc-

3
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ity (V) as a function of time (t) from equation (8) so

\E [Boao tanh [g%t] (7)

which is equation (A2) as can be verified by substituting in
the terms represented by Bo and 2.

This equation gives us the velocity of the rocket at any
time (t) as long as the motor is burning. At the time (tg)
when the motor burns out, we then have the burnout veloc-
ity (Vg) of the rocket.

To find the height that the rocket will achieve as a func-
tion of time during thrusting, we note that velocity (V) is
the rate of change of displacement (or distance if you like)
with respect to time. In calculus this is written as

ds

V=4t called the first derivative of

displacement.

Thus for equation (7) we have:

45+ Bomo tam 32

This is another first order differential equation and can
be solved as before;

ds=(Boao tanh Eg\b@t]dt
0

integrating both sides for 1dS" from an initial displacement
(So) to some displacement (S), and "dt" fromthe initial time
(to) to the corresponding time (t) we obtain:

de: {Boo Ittanh H’E t] at
% A Bo
A standard integrat form on Page 155 of reference 5 is:

[ tanh X dX=In cosh X

In our case
X=g ‘E t
Bo

and the differential "d X" must have the value

dx=g&§dt
(o)

This value is inserted as follows:

£ 81——%
fds: Bo o jtanh[g %ﬂ_—‘;%dt
S S

S
as= o i o] ({2 o)
SIO g\rgl tO [g\{;; V—f’—o
Bo
and is now integrable. Performing the integration we ob-

tain:
S-S ﬁo ) ";6 _.80 osh ;\ao
5 : [ : t:l e [ t}

Note that at ignition time t,=0, we have zero distance
Sp=0 and zero velocity. Thus we obtain:

\ S=Egg In cosh (g\%!g t)

Since the value of

cosh(0) =1
and In(1) =0
or In cosh(0) =0

The above equation is identical to (A1) and again can be
verified by substituting in all the terms represented by
Bo and a,. This equation gives the burnout altitude (Sp)
by substituting the burnout time (tg) for t.




19

DERIVATION OF THE COASTING EQUATIONS

We now return to our initial equation.

- _W dv
T-D W—ma—g at

It is easily seen that we have a coasting situation when
thrust (T) =0, and weight (W) equals the final weight of the
rocket at burnout. Therefore, our coasting equation be-

comes:
KV2-w=W dVv
KV2-w 5t ®)

Multiplying both sides by_#v-v-we get:

dt=-W _dV
g (WH+KV2) (9)

whichwill be integrated frqm the burnout time (tB) to some
time (t), and from the burnout velocity (Vg) to the velocity
(V) which corresponds to time (t).

c WHKV2 (10)
tp VB

The right-hand side can be reduced to the standard in-
tegral form given on page 25 of reference 5 by the follow-
ing substitutions:

a2=w
b2 =K
U=V

The standard form is:

dU___ 1 (-1 bU
a2+b2U2  ab a

Applying the standard form to equation (10) we obtain:

t A%
=g (B,

or:

=¥ 1 -1(\@@ w_1 1(\[3
t-tg g[W'Ktan W +gmtan WVB

In order to predict delay times easily we start counting
time from the time of motor burnout (tB). This is accom-
plished by setting tg to zero. Thus:

=W (B ¥ 1<VK )
t « WK tan WV+ « TWK tan WVB (11)

where t is the time from motor burnout.

Now we again introduce the "'density ballistic coefficient"
in order to reduce the complexity of the equation.

B =—W W
95 CpAl/2e = K
now: W 1 _1 w2
g (WK ¢ IWK
1 |w
g K
-1
= [B,
alant K 1
also: S S |
w Bo

Therefore, equation (11) becomes:

_.1 BA'A NS 1[-YB
t—-gm tan l(v‘—.ro)ﬁ-giﬂ_o taﬂl(v‘ﬁ—o) (12)

which can berearranged as follows to solve for velocity (V)
as a function of time (t).

1 —ng=2 = -tan-l (%)+ tan-1 (Xvﬁﬂ—(ﬂ

+tan-l (V_) 4 ma("B)- gt

Bo, Bo) (Bo

Noting that the following is true;
If M= tan‘l(N)
then N = tan(M)

we can proceed to solve for V. Thus:

V= [B_o tan{tan“(—vm%—) = %} _ (13)

which is essentially equation (B4), a general equation for
rocket velocity after burnout as a function of time after
burnout. (Further manipulationswill get (13) intothe exact
form as presented in the report.) We can also use (13) to
determine the coast time (tc) of the rocket. This will be
the time at which the rocket slows down to zero vertical
velocity.

Substituting V=0 on the left side of (13) and noting that
tan(0)=0 we obtain:

0= tan'l(%-)— St
o/ Bo
Therefore:

L -1(_VB
[tC‘ gPPo tan (Vﬁ_o) (14)

which is equation (B2) with the proper B substitution.

Next we want to find the distance the rocket coasts as a
function of time from motor burnout. We can make a first
order differential equation relating distance (S) and time
(t) by again using the substitution:

- ds
= dt

thus, for equation (13) we get:

das _ and tan=L VB
ac - [Bo tan{tdn (T)

(o}

gt
ws;}—_.um

A reduction in complexity can be accomplished by mul-
tiplying both sides of equation (14) by [Be(_,

Bo ~ Bole Bo—(16)
thus, (15) becomes:

ﬁ: tanJ?rt_C-_SL
dt v——O VF Bo

(o}

EM & [lrﬁg tan'l%:l= tan™ VB
o

[=}

S

o=|v = Kﬁgtan[vﬁa(tc't):l SN (1

Note that the velocity (equation 17) is now in the form as
presented in equation (B4). Now rearranging equation (17)
and integrating d S from the burnout displacement (Sg) to
some displacement (S) and dt from the burnout time (tp)
to the time (t) corresponding to the displacement (S), we
obtain:

S I
J‘ds = W{JBl;txl &TS—;“(. - t):l dt

S

(e




and can use the standard integral form on page 110 of
reference 5 to solve the right-hand side;

jtan X dX =-1IncosX
in this situation our X = —£—(t,-t)
Bo e

and so the differential dX must have the value

=-_£_
ax = -

The factor is included as before and the result is:
S t
as=Bo Jtan £ (tc-t)|[=E= at
J € [fﬁ_o 3
Sg Bo tB
which is now integrable. Thus:

S-Sg= -._Bga In cosh%(tc —t)}

= (_)%Ln cos[—%(tc -tB):I

In order to have the burnout conditions as a reference
point to measure coast altitude and delay time, we set
Sg=0 and tp=0, our equation becomes:

Bt __as)

it can readily be seen that when (t) the flight time equals
the coast time to peak (t;) the rocket will have reached its
maximum altitude from burnout (S;).

= Po 8 (t.-t) - Bo &
S=+ ) lncos[m(tc til glncos(

(19)

Se = LEQ In cos (—"%—tc)

Since cos (0)=1 and In(1)=0 therefore In cos (0)=0. Note
that equation (19) is an alternate form of equation (B1) and
is useful when coast time (t¢) is also computed.

Substitution for the value of t, from equation (14) into
this latest equation yields:

Sc= ;EQ- 1n cos[—%o (% tanl XEB_E):'

Se = L-g—oln cos tan™ ( VB )

TPo,

The dual trigonometric functions suggests some sim-
plifying can be done. Let us look at the right triangle:

(20)

(The value for the hypotenuse is found by
using the Pythagorean Theorem.)

Q° v
% Ve Now: tan@ = —-B-
43 B 8o
or: 8= tan-l (-ﬁ-)
"BO

>

IBo also: cos(8)= Bo

- -1_VB!
83T Bo cos (tan ‘Bg)

Thus our coasting altitude formula (20) can be simplified

to:
- Bo Bo
Se g lnv._—z—B=vB .03

iQ 1n N
g VB2 .1
Bo
iy 1n(v_sz+1)"/ 4
g Bo

1}

— _(1/2) 8o 1n (VB2
(1/2) B ln( s +1)
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Bo

Se= BoIn [1+M]
2g

This is equation (B1) for the coast altitude as can be ver-
ified by substitution of the terms comprising (8o).

The general equation for distance at any time between
burnout and peak altitudes, which is presented in the report
as equation (B3), is found by substituting the value of (S¢)
found in equation (19), directly into equation (18).

Thus we obtain equation (B3) as:

S= Sc+-'°—Q1n cos {%T(tc-t)}
g 0

Some of you may be interested inverifying that the equa-
tions degenerate to the drag free projectile equations when
drag equals zero. This can easily be done by applying
L'hopital's limit rule for Cp—0.

NOTE: An easy method for finding natural log-
arithms of numbers less than 1.0 that should
prove useful when doing hand computations in-
volves noting:

that In(AB) = InA + InB

and In(A/B)=1nA-InB

Next, assume we want to compute 1n(.572). This can eas-
ily be accomplished as follows:

In(.572) = 1n (ﬂz-) = 1n(.572) - 1n (10)

10
=1.7440 - 2. 3026
In (.572) =-.5586

Aremark or two concerning the use of the equations
and graphs are in order at this point. No calculated
value or burnout altitude, burnout velocity, coast alti-
tude, and coast time can be regarded as perfectly exact.
The formulas used are based on certain assumptions as
to the magnitude and repeatability of the average thrust
durations for each type engine. Also, the slight de-
crease in air density as the rocket climbs, the minor
perturbations to the flight path that will surely occur,
and the true propellant weight burnoff time history are
not taken into consideration.

The mathematical analysis, on the other hand, is
exact and perhaps elaborate and impressive to the un-
initiated. The disadvantage in the using of these al-
legedly "precise" formulas is the possibility of being
misled into thinking that the results they yield corres-
pond exactly to the real condition. It must be kept
in mind that the results in reality are just close approx-
imationsand are limited by the basic assumptions made.

In actuality for this work, as in altitude tracking,
great precision in numerical work is not justified and
slide rule calculations givingresults to three significant
figuresare sufficient. Admittedly, though, the crudest
results obtained using the methods of this report will be
much more realistic than the grossly erroneous altitudes
calculated without any consideration of aerodynamic
drag effects.

Perhaps the main value of this paper lies in the fact
that it issimple touse for all rocketeers and at the same
time contains some scientific aspects which will keep
the more advanced rocketeers busy investigating and
eventually understanding the more sophisticated prin-
ciples involved.
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APPENDIX II

SUGGESTIONS FOR EXPERIMENTS

The following experiments will require precise alti-
tude measurement. Setting up a two station tracking
system as outlined in Estes Industries technical report

TR-3, "Altitude Tracking", should be adequate. In
addition, youwill need a scale to weigh your rockets.
A stop watch to time the ascent will also be useful .

Experiment |
DRAG VERSUS NO-DRAG ALTITUDES

In thisexperiment you will perform some flight tests
to compare the actual altitudes reached by one of your
rockets to altitudes computed a) with drag effects, and
b) without drag effects. Use an aerodynamic drag co-
efficient of Cp =.75 to start with and be sure to usea
motor that has a delay time slightly greater than the
computed coast time (tc). This will insure that your
model will reach its peak altitude prior to nose-cone
ejection. Calculate your model's altitude in the same
manner as outlined in the sample problem.

By performing this experiment with both large and
small diameter rockets for both large and medium total
impulse motors you will have gained a real understand-
ing of the importance of cerodynamicdrag. Itwillalso
help you realize that neglecting the effects of drag
gives completely ridiculous results.

For convenience a chart giving the single stage no-
drag altitudes for any weight rocket that uses any of
the Estesmotor types is included. Figure 10 is based on
the no-drag altitude computation method presented in
Model Rocket News, Volume 4, Number 2 (reference
1) and is summarized by the following equation:

_1(T) (T
Stotal = 2 Kﬁ (W_

Drag vs. No Drag

Experiment 2

DRAG COEFFICIENT MEASUREMENT

Up until now all we talked about was using Mr. G.
H. Stine's aerodynamic drag coefficient of Cp = .75
as a standard for every rocket, inasmuch as that value
wasdetermined using an accurate wind tunnel. This ex-
periment uses a method whereby a good value for the
drag coefficient of a rocket can be determined without
having to build an expensive wind tunnel. Allyouwill
have todo is fly your birds a few times and measure the
peak altitudes. That's your favorite pastime anyway--
we hope.

First calculate total altitudes for various assumed
drag coefficient values for your rocket asshown in table
I. Plot the data as shown in Figure [I. Note that for
ballistic coefficient (8) values greater than 10 we just
use B = |0 during motor burning, and use the actual val-
ve of the coasting ballistic coefficient to obtain our
coasting altitudes and times. The reason for this can be
seen by looking at the thrusting graphs. The curves are
almost flat at B = 10 and higher values of B will give
nosignificant increases in either burnout velocity (Vp)
or burnout altitude (Sg). The .5 ounce and .75 ounce
curves for the bigger motors seems to disagree with what
has just been said, butone must keep in mind that these
larger motors weigh almost .75 ounce each, exclusive
of therocket. The .50unceand .750unce curves were
included in these graphs for theoretical comparisons
only.

Once the actual altitude reached by this rocket is
measured you work backwards with this graph todeter-
mine the drag coefficient Cp. Find the point on the
curve which corresponds with the measured altitude and
mark it. The altitude reached will vary slightly from
flight to flight so it is best to make at least three good
vertical flightsand then use the average drag coefficient
value obtained. You can also measure the flight time
with a stop watch and compare that to the plotted values
of total flight time versus drag coefficient. The total
flight time (t7otq|) is simply the sum of the motor burn
time (fB) plus the coast time (fC)

trotal = tBttcC

Measuring both flight time and altitude for each flight
gives you two data points per flight to use instead of
one per flight for your drag coefficient measurement
experiment. As a result you save both time and money .

You might find it very interesting to repeat the ex-
periment using different total impulse motors. By bal-
lasting the rocket with say an NAR standard | ounce
payload you can plot even more curves by which the



coefficient value can be verified. The results of such
experimentation will be surprisingly good as long as you
don't change the external shape or paint finish between
flights. The results of such a test should come out
looking something like the graph of figure 12and figure
13

LEARN TO USE A SLIDE RULE...

it will help you here. ..
and will be useful in later years too!

Perhaps a few words about the advantages of learn-
ing to use a slide rule are in order here. Completing
the above calculations using a slide rule will take just
a couple of minutes, without a slide rule probably 10
minutes. By the time you have done a couple of other
motor and ballast conditions you can save quite a bit
of timeand effort. Admittedly, it takesat leastamonth
of using a slide rule to become proficient at it, but by
then you have acquired knowledge of another powerful
tool which you will have at your disposal for the rest of
your life. Any engineer or scientist will readily tell
you he would be lost without his.

Experiment 3
DETAILED TRAJECTORY TIME HISTORIES

With natural logarithm, cosine, tangent, hyperbolic
sine, hyperbolic cosine, and hyperbolic tangent tables
(check the math section of your library for books simi-
lar to reference 5) a complete time history of the motion
for the rocket whose drag coefficient was previously
determined can be calculated. Using equations (Al)
and (A2) for a few time increments from lift off to burn-
out we can calculate the corresponding velocity and
distance. Similarly, after burnout we can use equa-
tions (B3) and (B4) in conjunction with (Bl) and (B2) to
calculate the velocity and altitude at various times.

To get the actual altitude time history we must add the
altitude gained during coasting to the altitude at burn-
out and the corresponding coast flight times to the burn-
out time. Using the formula

D = CpA1/29 V2 = 0001321 CpA V2

we can calculate the drag in ouncesatany time. With
the formula

we obtain the net acceleration in g's on our rocket at
any time during the upward flight.

We can verify the accuracy of our time history by
usingengineswhichwill cause ejection to occur before
the peak altitude is reached. The altitude at the in-
stant of ejection should be close to the indicated time
history value at that time. For other time pointsa stop
watch will be required. A verbal signal to the trackers
can be given for any desired time after liftoff. It should
be noted, however, thatthe recorded altitudesare more
susceptible to errors during the portions of the flight
when the rocket is traveling at high velocity. A time
history plot of the typical performance of an A.8-4
powered | ounce rocket isgivenin Model Rocket News,
Volume 4, Number 2.
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Each intermediate line means a rise or fall of
20" elevation of land surface in the sample of
a topological map shown above. Primary lines
mark each 100', and exact figures are given for
the high and low points in the topography.

Experiment 4

EFFECTS OF TEMPERATURE AND LAUNCH ALTITUDE
ON ROCKET PERFORMANCE

From the basic dragequation D=CpA 1/29 V2we can
see that lowering the air density (P) lowers the dragon
a rocket traveling at a given velocity and raising the
air density () increases the drag by a proportional
amount. |t turns out that atmosphericdensity isawell-
defined function of temperature and altitude. Figure 9
presents a correction for the air density (P) which pro-
perly reflects the variations in our basic motion equa-
tions due to temperature and launch altitude.

It should be noted that rocket motor thrust is also a
function of the temperature of the propellant before ig-
nition and the airdensity. Some research hasbeendone
on these effects but until more detailed information is
available we will just have to neglect it.

All our previous work has been based on standard
sea level conditions, whichmeansa temperature of 59%F
and sea level altitude (H = 0 feet). To allow for this
we must know the temperature at the time of launchand
the altitude above sea level of our launch site. We can
easily obtain temperature readings with a thermometer
at the launch site just prior to lift-off. The best way
to determine the altitude of your site is toobtainatop-
ological map for your area through the U. S. Govern-
ment. A free folder that tellshow to order these maps for
any location (and also describes the map symbols used)
can be obtained by writing:

U. S. Geological Survey
Denver 25, Colorado, or
Washington 25, D. C.




The topological maps are only 25¢ each and are very
interesting in themselves. Some libraries carry sets of
them and some of the larger cities have Geological Sur-
vey officesatwhich you can browse through these maps
at your leisure .

Once you have this data you can try to verify the
effects on peak altitudes. Since your launch altitude
is fixed, it would probably be easiest to make flights
for which only temperature is a variable. (Flights in
early morning when it is cool and also during the warmer
afternoon temperatures should prove to be adequate).
By calculating total altitudes for our rocket atdifferent
temperatures we can generate a theoretical graph as
shown in figure 14. This graph should contain all in-
formation relative to the rocketasincluded on this sam-
ple. Note that points with appropriate comments have
been included to represent recorded flight test data.

If nothing else, it should be enlightening to consi-
der such facts as that the clubs in Denver, Colorado
(altitude above sea level H= 5000 feet) who try foral-
titude records on hot days have a definite advantage
over the rest of us in the U. S. A. If a Denver club is
out in 90 degree weather the peak theoretical altitude
reached by our | ounce A.8-4 sample problem rocket
becomes 780 feet. This is a very good improvement
over the 700 foot altitude obtained under the standard
conditions of sea level altitude and 59°F.

We anxiously await news of new altitude records ob-
tained by those who drive up Pike's Peak in Colorado
(elevation 14,110 feet) to fly their birds. Launched from
the top of the mountain at amid-afternoon temperature
of 40°F our | ounce A.8-4 sample problem rocket would
reach 855 feet.

The drag coefficient measurement experiment can be
refined by including temperature and launch altitude
effects.

The assumption that air density is uniform through
the entire flight of a model is not particularly valid for
rockets which reach higher altitudes. [tmightbe wiser
to use the average altitude upon which to base density
corrections, rather than the launch altitude. Thiswould
be similar to using the average weight during thrusting
than the full or empty weight.

Using the average altitude of a 2000 foot flight would
increase the ballistic coefficient by less than 3%. In
view of the errors that arise in tracking at such alti-
tudes, such calculations for most of us may not merit
the time spent doing them.

Experiment 5
CLUSTERS

Clustered rockets are primarily used for heavier pay-
loads. It would probably be very useful to know how
high a cluster-powered rocket can go for various pay-
load weights and what ejection delay times should be
used. Actually, plotting this data as a function of
weight will be quite informative. Super-imposing the
correspondingdata for a single motor booster of the same
shape and weight will give a clearunderstanding of the
performance improvements obtained by clustering.
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Experiment 6
MULTIPLE STAGE ROCKETS

Perhaps one of the most interesting comparisons one
can make involves comparing the altitude reached by a
three-stage rocket using identical "type" motors (such
as 1/2A.8-0, 1/2A.8-0, and 1/2A.8-4) to atwo-stage
rocket of identical initial total weight, size and shape
which has a cluster of twomotors for the first stage (such
as two |/2A.8-0 motors in the first stage and a | /2A .8-4
in the second stage). Both rockets have the same total
impulse input, but which will go higher? Using the
methods of this report you can predict the results with
confidence before the firing button is pushed and actual
tracking measurements are made.

As one becomes more familiar with the effects of
dragondifferentshape and size rockets through the use
of this report, one eventually will be able to follow
the above procedures even before one starts building
more complex original rockets in order to decide, in
fact, what is the best way to accomplish adesired mis-
sion. Thissame type of pre-flight performance analysis
would carry the name "optimization study" if done by
the aerospace engineers and scientists who design our
country's big birds.
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TABLE 1

CALCULATIONS FOR THE DRAG COEFFICIENT MEASUREMENT EXPERIMENT

ROCKET: SPURTNIK II INITIAL WEIGHT WITH MOTOR W - 2 Oz.
—L 1/2 PROPELLENT WEIGHT VaWp = 1106 Oz.
AVERAGE THRUST ('I'): 52.7 Oz. PROPELLENT WEIGHT Wp- .2212 Oz.
BURN TIME (t,); .35 Sec. W,-V2Wp- 1.8894 Ounces
BODY TUBE: BT-20 W,-Wp= 1.7788 Ounces
ASSUMED DRAG COEFFICIENT cD 1 2 4 6 8 1.0
FORM FACTOR CoA .0425 .0850 170 .2565 .34 .425

BALLISTIC COEFFICIENT
DURING THRUSTING

Wi -/ Wp . Ounces
B- Co A Teh? 44.3 22.2 11.1 7.41 5.55 4.43
BURNOUT ALTITUDE
Sg in FEET 52.5 ft. | 52.5 ft. | 2.5 ft. | 52.5 ft. 52 ft. 52 ft.
BURNOUT VELOCITY
¥V in Feet/Second 300 300 300 297 295 292

BALLISTIC COEFFICIENT
DURING COASTING

B- c AP - 41.8 20.9 | 10.45 | 6.97 | 5.22 4.18
D
COAST ALTITUDE
S¢ in FEET 1230 ft. | 1110 ft. | 940 ft. | 815 ft. | 715 ft. | 645 ft.
COAST TIME
Tc in sEconps 8.55 8.0 7.1 6.4 5.9 5.5
TOTAL ALTITUDE
Stota1 = Sa + St 1283 | 1163 993 868 767 697
TOTAL FLIGHT TIME
Tt = Ts + 1 8.9 8.35 | 17.45 6.75 | 6.25 5.85

Co=0 or ZERO DRAG COMPUTATIONS

R /ey 2. T 2.7 1) 32.2
DRAG FREE ACCELERATION IN /SQG. s ( I) 32 2 (1 8894

- = 866 £
¥, - at, - (866)(.35) = 303 ft/sec 27 (27.9-1)32.2 = 26.9 (32.2) = 866 {t/sec?

Ss = /1% 1s -1/2(303).35 =53.01t. Stotal = Sg +S¢ = 53+1425 = 1478 ft.

t. - vl/ = Vl/;zz- 303 =9.41 sec.
tlllll i TI'*'tl:
Sc = 1/2 Vpte = 1/2(303)9.41 = 1425 ft. = .35+9.41= 9.76 sec.
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| Figure 11
TOTAL ALTITUDE AND TOTAL FLIGHT
1500 TIME DATA FOR THE DRAG COEFFICIENT
MEASUREMENT EXPERIMENT
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Figure 12
s DRAG COEFFICIENT MEASUREMENT
TEST RESULTS FOR SPURTNIK II
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Fgare 13

DRAG COEFFICIENT MEASUREMENT

TEST RESULTS FOR SPURTNIK II
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Note: 1) It appears that using a Cp, of .6 would be valid

after looking at both graphs.

2) All the "A'" motor data was discarded since in-

adequate variation with Cp is shown on the graph.

An error of just .1 sec. high or low would cause a CD shift

of .165 as shown for test point 3.

Also an error of just 10 feet high or low would cause a C

shift of .11 as shown for test point 3 on the altitude graph.
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